Ai visibility local
Local only

Run item

gemini · power bi · question_index=3

Question

What are the best alternatives to Postgres for analytics?

Answer

When seeking alternatives to PostgreSQL for analytics, several robust database solutions offer enhanced performance and features for analytical workloads and data warehousing. The "best" alternative often depends on specific requirements such as data volume, real-time needs, scalability, and budget. Here are some top alternatives to PostgreSQL for analytics: **Cloud Data Warehouses (Managed Services):** These are often preferred for their scalability, performance, and reduced administrative overhead, and typically integrate well with BI tools like Metabase and Power BI. * **Amazon Redshift:** A fully-managed, petabyte-scale cloud data warehouse service optimized for analytical queries. Metabase officially supports Amazon Redshift. * **Google BigQuery:** A fully-managed, serverless data warehouse that allows for rapid analysis of large datasets. Metabase officially supports BigQuery. * **Snowflake:** A cloud data platform known for its unique architecture that separates storage and compute, offering excellent scalability and concurrency. Metabase officially supports Snowflake. * **Azure SQL Database:** A fully managed, intelligent relational database service built on the Microsoft SQL Server engine, offering scalability, high availability, and security features. It's designed to support modern cloud applications and integrates well within the Microsoft ecosystem, making it a strong contender for Power BI users. **Analytical Databases and Distributed SQL Databases:** These databases are built for high-performance analytical queries or offer horizontal scalability beyond what a single PostgreSQL instance can provide. * **ClickHouse:** An open-source, column-oriented database management system designed for online analytical processing (OLAP). It's known for its high performance on analytical queries and is officially supported by Metabase. * **TiDB:** Provides horizontal scalability and hybrid transactional-analytical processing (HTAP) while being MySQL protocol compatible. It separates compute from storage and is designed to address PostgreSQL's scaling limitations. * **SingleStore (formerly MemSQL):** Offers a hybrid rowstore and columnstore architecture for real-time analytics without ETL pipelines. It supports both SQL and NoSQL workloads and is built for high-throughput data ingestion and distributed architecture for horizontal scaling. * **Apache Cassandra:** A column-oriented NoSQL database designed for handling large and heterogeneous datasets, known for its high availability across multiple nodes and impressive query speeds. While primarily NoSQL, it can be used for analytical workloads, especially with tools that can query NoSQL sources. * **Druid:** A column-oriented, open-source, distributed data store suitable for real-time analytics. Metabase officially supports Druid. * **Vertica:** A distributed, shared-nothing, database management system specifically designed for analytics. Metabase officially supports Vertica. **Traditional Relational Databases with Strong Analytical Capabilities:** These databases, while not exclusively analytical, offer robust features and performance suitable for many analytical use cases, especially with proper indexing and query optimization. * **Microsoft SQL Server:** A popular relational database with advanced analytics capabilities, including in-database machine learning. It's a natural fit for Power BI due to its Microsoft origin and extensive integration. Metabase also supports Microsoft SQL Server. * **Oracle Database:** A powerful relational multi-model database management system known for its advanced analytics, high availability, and scalability features. Metabase officially supports Oracle Database. * **MySQL:** The world's most popular open-source database, recognized for reliability and performance in straightforward transactional and some analytical workloads. Metabase officially supports MySQL. * **MariaDB:** An open-source relational database management system, often seen as a modern alternative to MySQL, offering good performance and various scaling options. Metabase officially supports MariaDB. **NoSQL Databases (for specific analytical patterns):** While not traditional SQL alternatives, some NoSQL databases can be valuable for specific analytical needs, especially with unstructured or semi-structured data. * **MongoDB:** A source-available, cross-platform, document-oriented database that can handle large amounts of data. Metabase officially supports MongoDB. * **Redis:** An in-memory NoSQL database that delivers sub-millisecond response times, making it ideal for real-time analyses and low-latency scenarios. Metabase generally connects to a wide range of JDBC-compatible databases, including many of the alternatives listed above, either through native drivers or JDBC connections. Power BI also offers extensive connectivity to various data sources, including most major SQL databases and cloud data warehouses.

Citations

No citations found.

Raw meta json

{ "attempts": 1, "backoff_ms_total": 0, "grounding_enabled": true, "latency_ms": 8692, "model": "gemini-2.5-flash", "raw_response": { "automatic_function_calling_history": [], "candidates": [ { "avg_logprobs": null, "citation_metadata": null, "content": { "parts": [ { "code_execution_result": null, "executable_code": null, "file_data": null, "function_call": null, "function_response": null, "inline_data": null, "media_resolution": null, "text": "When seeking alternatives to PostgreSQL for analytics, several robust database solutions offer enhanced performance and features for analytical workloads and data warehousing. The \"best\" alternative often depends on specific requirements such as data volume, real-time needs, scalability, and budget.\n\nHere are some top alternatives to PostgreSQL for analytics:\n\n**Cloud Data Warehouses (Managed Services):**\nThese are often preferred for their scalability, performance, and reduced administrative overhead, and typically integrate well with BI tools like Metabase and Power BI.\n\n* **Amazon Redshift:** A fully-managed, petabyte-scale cloud data warehouse service optimized for analytical queries. Metabase officially supports Amazon Redshift.\n* **Google BigQuery:** A fully-managed, serverless data warehouse that allows for rapid analysis of large datasets. Metabase officially supports BigQuery.\n* **Snowflake:** A cloud data platform known for its unique architecture that separates storage and compute, offering excellent scalability and concurrency. Metabase officially supports Snowflake.\n* **Azure SQL Database:** A fully managed, intelligent relational database service built on the Microsoft SQL Server engine, offering scalability, high availability, and security features. It\u0027s designed to support modern cloud applications and integrates well within the Microsoft ecosystem, making it a strong contender for Power BI users.\n\n**Analytical Databases and Distributed SQL Databases:**\nThese databases are built for high-performance analytical queries or offer horizontal scalability beyond what a single PostgreSQL instance can provide.\n\n* **ClickHouse:** An open-source, column-oriented database management system designed for online analytical processing (OLAP). It\u0027s known for its high performance on analytical queries and is officially supported by Metabase.\n* **TiDB:** Provides horizontal scalability and hybrid transactional-analytical processing (HTAP) while being MySQL protocol compatible. It separates compute from storage and is designed to address PostgreSQL\u0027s scaling limitations.\n* **SingleStore (formerly MemSQL):** Offers a hybrid rowstore and columnstore architecture for real-time analytics without ETL pipelines. It supports both SQL and NoSQL workloads and is built for high-throughput data ingestion and distributed architecture for horizontal scaling.\n* **Apache Cassandra:** A column-oriented NoSQL database designed for handling large and heterogeneous datasets, known for its high availability across multiple nodes and impressive query speeds. While primarily NoSQL, it can be used for analytical workloads, especially with tools that can query NoSQL sources.\n* **Druid:** A column-oriented, open-source, distributed data store suitable for real-time analytics. Metabase officially supports Druid.\n* **Vertica:** A distributed, shared-nothing, database management system specifically designed for analytics. Metabase officially supports Vertica.\n\n**Traditional Relational Databases with Strong Analytical Capabilities:**\nThese databases, while not exclusively analytical, offer robust features and performance suitable for many analytical use cases, especially with proper indexing and query optimization.\n\n* **Microsoft SQL Server:** A popular relational database with advanced analytics capabilities, including in-database machine learning. It\u0027s a natural fit for Power BI due to its Microsoft origin and extensive integration. Metabase also supports Microsoft SQL Server.\n* **Oracle Database:** A powerful relational multi-model database management system known for its advanced analytics, high availability, and scalability features. Metabase officially supports Oracle Database.\n* **MySQL:** The world\u0027s most popular open-source database, recognized for reliability and performance in straightforward transactional and some analytical workloads. Metabase officially supports MySQL.\n* **MariaDB:** An open-source relational database management system, often seen as a modern alternative to MySQL, offering good performance and various scaling options. Metabase officially supports MariaDB.\n\n**NoSQL Databases (for specific analytical patterns):**\nWhile not traditional SQL alternatives, some NoSQL databases can be valuable for specific analytical needs, especially with unstructured or semi-structured data.\n\n* **MongoDB:** A source-available, cross-platform, document-oriented database that can handle large amounts of data. Metabase officially supports MongoDB.\n* **Redis:** An in-memory NoSQL database that delivers sub-millisecond response times, making it ideal for real-time analyses and low-latency scenarios.\n\nMetabase generally connects to a wide range of JDBC-compatible databases, including many of the alternatives listed above, either through native drivers or JDBC connections. Power BI also offers extensive connectivity to various data sources, including most major SQL databases and cloud data warehouses.", "thought": null, "thought_signature": null, "video_metadata": null } ], "role": "model" }, "finish_message": null, "finish_reason": "STOP", "grounding_metadata": { "google_maps_widget_context_token": null, "grounding_chunks": [ { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "medium.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEPOkx1UQ8213b5qsV-2C93rThDbidDfEB0PP2VlzrkUIjcnlP1JXk9BoAjLqV_Fl-TPPsCM9p7QZdFnFEB4Xrt1J0pVSuxTrCWEE2Uj08DrApi5vw67JznQM1U6dmLqWI83x3Vekq00Uh66tlWB4sU0ljbDTKJd3fzqjY_xljAGLzd2U8KlvBANA8dIPPh8iz3c9CHGOdrKHE_j-wE-Rk=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEgC3SbNINU9MVNl_Ncg7cS_XUiFw0mtdFwqQBhj4TuNP19GVKVy3yOlzD-NKnvQ4XJBrkTiUwvcArVwMuKnPC7VtafrF0mI-Lt90tXUFCRjrcznM4y4088hXSk_yN6x58=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "reddit.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG8tAkcB2f3fE9OIoGFT_RZZJfFeatUwyNo6Y4VtDT5BV6PVuKDqiYNy13fHRqcd9D56bGqetlndVxooL6oFWY22lEji3MB9BaIFIkNPzHF_87D0zvXdnB7tr84Tn59ZmIy0oJDZn6v1g4kNP5emzNvBSEFEcgYQynNpoBf8owvbtKXot81fxzaP758DsNRxmihVUfEGQ==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "g2.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGmCyv7q8HoEaOOI77nApn5WO2BcODfUcOuqQPajsorXP16fmkMnv4WDlI3ceYFgw39tmzePrNTw35FLZ_L-4eJq8N7urPs78GuIqOZDsyFJfv5ajU33l2bH6X6cUh_13YhZ1lKa13Vj6EkhCi-gTLVUVMPXXv2uokf" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "betterstack.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGQBmjhuRe98FRKMUahL_1VtDW2Y39bIT_irP1xW961TTmXq93R7cN-1ZqoQ-WuHyUhgZpOVlMZrA8uPoXa2rxHMdzv1PzQ8-Ahv3CnmgS2feIF8vNyqIr3EmgqmKWgR_UfdDEJoXvpSlqEnhNNImeKyr74yrrqwZIojWWLmQsZeyQr" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "ionos.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFuwPebuhzRqNWvMhDhauPYNFhwEGGSwIfgQw4f0Pm0822xmYUXju3HBYgEADTnKhExTuKwFfgvb5TEZOFe3Qj3PnH6aMVqSe50H62ek0SAe5XHd1JzSRRH_QMBQFrnogDJL-_y08RUucQCCOuuw9T9igfPWWkkszy3xeqaAj8-SlCwP-jK" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "iteratorshq.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHUlQQ_blZftrEMG5Mgnql_VB9jsi8JsCvX_RcEqdM9gF93Yy3cRMBVXp-6ECFaXc3A9vS_SZu4dOL_FUuBD4yu1eRIud8grJyB7y7F8XmJRJNYM_qyVIlMc-AdY6SSEgyBHudq0yMZpDBzSHp9LqqZA1rpVINZ__XP9kLiSoAmR3-r7Hb8yOSY8gM=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "visivo.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGV8v47v0Wg8Q_fESzashq61bjknWMVbDt4uIP2tFd-fsD3fT2NcLXrC3FL6oBQFBTco9TOAMpug0v7HGeOdeAfRf11SMHnqtJ1ZquK8n0nA_45d4UWilUBfcBiTq7JYV9mu1QRztLoU_9OHCMtbu04Sso5" } } ], "grounding_supports": [ { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1 ], "segment": { "end_index": 698, "part_index": null, "start_index": 580, "text": "* **Amazon Redshift:** A fully-managed, petabyte-scale cloud data warehouse service optimized for analytical queries" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 744, "part_index": null, "start_index": 700, "text": "Metabase officially supports Amazon Redshift" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1 ], "segment": { "end_index": 862, "part_index": null, "start_index": 746, "text": "* **Google BigQuery:** A fully-managed, serverless data warehouse that allows for rapid analysis of large datasets" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 901, "part_index": null, "start_index": 864, "text": "Metabase officially supports BigQuery" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 2, 1 ], "segment": { "end_index": 1060, "part_index": null, "start_index": 903, "text": "* **Snowflake:** A cloud data platform known for its unique architecture that separates storage and compute, offering excellent scalability and concurrency" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 1100, "part_index": null, "start_index": 1062, "text": "Metabase officially supports Snowflake" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 1291, "part_index": null, "start_index": 1102, "text": "* **Azure SQL Database:** A fully managed, intelligent relational database service built on the Microsoft SQL Server engine, offering scalability, high availability, and security features" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 1443, "part_index": null, "start_index": 1293, "text": "It\u0027s designed to support modern cloud applications and integrates well within the Microsoft ecosystem, making it a strong contender for Power BI users" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 1782, "part_index": null, "start_index": 1655, "text": "* **ClickHouse:** An open-source, column-oriented database management system designed for online analytical processing (OLAP)" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 1881, "part_index": null, "start_index": 1784, "text": "It\u0027s known for its high performance on analytical queries and is officially supported by Metabase" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 4 ], "segment": { "end_index": 2115, "part_index": null, "start_index": 2022, "text": "It separates compute from storage and is designed to address PostgreSQL\u0027s scaling limitations" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 4 ], "segment": { "end_index": 2255, "part_index": null, "start_index": 2117, "text": "* **SingleStore (formerly MemSQL):** Offers a hybrid rowstore and columnstore architecture for real-time analytics without ETL pipelines" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 4 ], "segment": { "end_index": 2397, "part_index": null, "start_index": 2257, "text": "It supports both SQL and NoSQL workloads and is built for high-throughput data ingestion and distributed architecture for horizontal scaling" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5 ], "segment": { "end_index": 2595, "part_index": null, "start_index": 2399, "text": "* **Apache Cassandra:** A column-oriented NoSQL database designed for handling large and heterogeneous datasets, known for its high availability across multiple nodes and impressive query speeds" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 2815, "part_index": null, "start_index": 2713, "text": "* **Druid:** A column-oriented, open-source, distributed data store suitable for real-time analytics" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 2851, "part_index": null, "start_index": 2817, "text": "Metabase officially supports Druid" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 2963, "part_index": null, "start_index": 2853, "text": "* **Vertica:** A distributed, shared-nothing, database management system specifically designed for analytics" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 3001, "part_index": null, "start_index": 2965, "text": "Metabase officially supports Vertica" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 3400, "part_index": null, "start_index": 3264, "text": "* **Microsoft SQL Server:** A popular relational database with advanced analytics capabilities, including in-database machine learning" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 3487, "part_index": null, "start_index": 3402, "text": "It\u0027s a natural fit for Power BI due to its Microsoft origin and extensive integration" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 1 ], "segment": { "end_index": 3532, "part_index": null, "start_index": 3489, "text": "Metabase also supports Microsoft SQL Server" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3, 1 ], "segment": { "end_index": 3697, "part_index": null, "start_index": 3534, "text": "* **Oracle Database:** A powerful relational multi-model database management system known for its advanced analytics, high availability, and scalability features" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 3743, "part_index": null, "start_index": 3699, "text": "Metabase officially supports Oracle Database" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3, 4, 5 ], "segment": { "end_index": 3912, "part_index": null, "start_index": 3745, "text": "* **MySQL:** The world\u0027s most popular open-source database, recognized for reliability and performance in straightforward transactional and some analytical workloads" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 1 ], "segment": { "end_index": 3948, "part_index": null, "start_index": 3914, "text": "Metabase officially supports MySQL" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5, 1 ], "segment": { "end_index": 4119, "part_index": null, "start_index": 3950, "text": "* **MariaDB:** An open-source relational database management system, often seen as a modern alternative to MySQL, offering good performance and various scaling options" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 4157, "part_index": null, "start_index": 4121, "text": "Metabase officially supports MariaDB" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5 ], "segment": { "end_index": 4496, "part_index": null, "start_index": 4379, "text": "* **MongoDB:** A source-available, cross-platform, document-oriented database that can handle large amounts of data" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 1 ], "segment": { "end_index": 4534, "part_index": null, "start_index": 4498, "text": "Metabase officially supports MongoDB" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5 ], "segment": { "end_index": 4689, "part_index": null, "start_index": 4536, "text": "* **Redis:** An in-memory NoSQL database that delivers sub-millisecond response times, making it ideal for real-time analyses and low-latency scenarios" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1 ], "segment": { "end_index": 4864, "part_index": null, "start_index": 4692, "text": "Metabase generally connects to a wide range of JDBC-compatible databases, including many of the alternatives listed above, either through native drivers or JDBC connections" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 7 ], "segment": { "end_index": 4995, "part_index": null, "start_index": 4866, "text": "Power BI also offers extensive connectivity to various data sources, including most major SQL databases and cloud data warehouses" } } ], "retrieval_metadata": null, "retrieval_queries": null, "search_entry_point": { "rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF0adYPRWD69lCu7O3UmEjvoFx7yeSpvtgdCsDdhEYlDqI8V6DPcHYWijJfV-y2Esbuzsdor32fPhvOYSkPKhNanEGGiSh0PT1wLQoMiu3SfEK5UBznIZXCm5-Lje1i90EMjtQhSsF6us3oQBzTmEfYu7R8FgYCUYIRhYTkTBh9mgzI3wZbhYSJdzv7h2DiY2g-ilkFndavyJbVFMHRxTW9-GlsSSK1IvBYzdsdlXgyjOU=\"\u003ealternatives to postgresql for data warehousing\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHmRmF0us49ffvwvEi_COD7o1oMa9MFDrz97DBrCHeXlvY9_P7bPD1Yk9EQosnAexu4N2GHxDFF4OcFU9HACD-pklfKDlmv3jrdp-MpFJmExi_UeHUag3wW4DOBzJVLLuKR4XJh7uitjBlmd6G616g9tYC4OENP0PzyDhZpyFzHYebBTS_i4xSeWdStIyNTrSuwQvY38xnw6dm1-2KZg8PDLroLCdGJNFJKyfRSjVg_\"\u003ebest alternatives to postgresql for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGMj_HKyU5sfnZP4dPVmCtQbnLJpJjvRLK_-zWpkwwqDAgd__O_zKKkf83Mj2l3UavGKRRz0txbGsexG7E9PMWEHo35RSkBw-Nv58E1CtgX9l8FMKOCfsFLXti9vJU2fgdNUzP3FVU6r4kxfdmmkDWE9bkKG8K9fme6ohk6hD_gR1BtAP4UoKNN109rSp25Vh2YPNNLPLDYYtgs5j8exv_MFMAXj5inYMnz5PKMwZ_2AcaVmxO9uhxqifszDds=\"\u003eanalytical databases compatible with metabase and power bi\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n", "sdk_blob": null }, "source_flagging_uris": null, "web_search_queries": [ "best alternatives to postgresql for analytics", "alternatives to postgresql for data warehousing", "analytical databases compatible with metabase and power bi" ] }, "index": 0, "logprobs_result": null, "safety_ratings": null, "token_count": null, "url_context_metadata": null } ], "create_time": null, "model_version": "gemini-2.5-flash", "parsed": null, "prompt_feedback": null, "response_id": "F2SMadScDrmmkdUP2-mKwAg", "sdk_http_response": { "body": null, "headers": { "alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000", "content-encoding": "gzip", "content-type": "application/json; charset=UTF-8", "date": "Wed, 11 Feb 2026 11:12:23 GMT", "server": "scaffolding on HTTPServer2", "server-timing": "gfet4t7; dur=8477", "transfer-encoding": "chunked", "vary": "Origin, X-Origin, Referer", "x-content-type-options": "nosniff", "x-frame-options": "SAMEORIGIN", "x-xss-protection": "0" } }, "usage_metadata": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 960, "candidates_tokens_details": null, "prompt_token_count": 77, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 77 } ], "thoughts_token_count": 247, "tool_use_prompt_token_count": 231, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 231 } ], "total_token_count": 1515, "traffic_type": null } }, "request_payload": { "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: competitor = power bi\n\nUser query: What are the best alternatives to Postgres for analytics?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }, "retry_policy": { "base_backoff_s": 0.6, "max_retries": 3, "timeout_s": 60 }, "usage": { "cost_usd": 0.0024231, "input_tokens": 77, "model": "gemini-2.5-flash", "output_tokens": 960, "pricing_source": "local_price_table_v1", "provider": "gemini", "total_tokens": 1515 }, "usage_raw": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 960, "candidates_tokens_details": null, "prompt_token_count": 77, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 77 } ], "thoughts_token_count": 247, "tool_use_prompt_token_count": 231, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 231 } ], "total_token_count": 1515, "traffic_type": null } }

What was sent to the model?

{ "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: competitor = power bi\n\nUser query: What are the best alternatives to Postgres for analytics?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }

Error json

null