Ai visibility local
Local only

Run item

gemini · Metabase · question_index=3

Question

What are the best alternatives to Postgres for analytics?

Answer

For analytical workloads, several robust alternatives to PostgreSQL offer enhanced performance and scalability, particularly for large datasets and complex queries. These alternatives often leverage architectures optimized for Online Analytical Processing (OLAP), such as columnar storage and massively parallel processing (MPP). Some of the best alternatives to PostgreSQL for analytics include: * **Cloud Data Warehouses:** * **Amazon Redshift:** A fully-managed, petabyte-scale data warehouse service that excels at analytical queries. It is an official connector for Metabase. * **Google BigQuery:** A fully-managed, serverless data warehouse known for its ability to process petabytes of data at high speed using SQL. Metabase officially supports BigQuery. * **Snowflake:** A cloud-native data platform offering a unified AI Data Cloud that eliminates data silos and simplifies architectures for storing, analyzing, and leveraging data at massive scale. It features an elastic compute engine for various workloads and is officially supported by Metabase. * **Firebolt:** A cloud data warehouse designed for sub-second response times on analytical queries, offering efficient data pruning through sparse indexes and simplified partition management. * **Open-Source OLAP Databases:** * **ClickHouse:** An open-source, column-oriented database management system built for high-speed analytical data reports in real-time using SQL queries. It is highly efficient and optimized for OLAP scenarios, often performing 100x faster than row-oriented databases for many queries. Metabase offers an official connector for ClickHouse. * **Apache Druid:** An open-source, column-oriented, distributed data store optimized for real-time analytics with streaming ingestion and time-series optimization. It's built for high-speed ingestion and aggregation at scale. Metabase officially supports Druid. * **Apache Pinot:** An open-source column-oriented distributed data store designed for ultra-low latency OLAP for user-facing analytics at scale. * **Apache Doris** (also referred to as Doris): An open-source, high-performance real-time analytical database that supports both batch and streaming data ingestion. * **Other Relational Databases (often used for analytics in specific contexts):** * **Microsoft SQL Server:** A widely used relational database that integrates advanced analytics capabilities, including in-database machine learning. Metabase provides an official connector for SQL Server. * **Oracle Database:** Known for its advanced analytics capabilities, high availability, and scalability for mission-critical applications. Metabase supports Oracle Database. * **MySQL:** A popular open-source relational database that offers a comprehensive suite of features for modern applications and can handle analytical workloads, especially for simpler use cases. Metabase officially supports MySQL. * **MariaDB:** A community-developed, commercially supported fork of MySQL, also officially supported by Metabase. * **SQLite:** A self-contained, serverless, and zero-configuration SQL database engine, suitable for embedded and ad-hoc analysis. Metabase has an official connector for SQLite. These alternatives offer distinct advantages over PostgreSQL for analytics, primarily due to their architectural optimizations for read-heavy, complex analytical queries. Metabase, the brand under analysis, provides official connectors for many of these databases, simplifying their integration for business intelligence and data exploration.

Citations

No citations found.

Raw meta json

{ "attempts": 1, "backoff_ms_total": 0, "grounding_enabled": true, "latency_ms": 9129, "model": "gemini-2.5-flash", "raw_response": { "automatic_function_calling_history": [], "candidates": [ { "avg_logprobs": null, "citation_metadata": null, "content": { "parts": [ { "code_execution_result": null, "executable_code": null, "file_data": null, "function_call": null, "function_response": null, "inline_data": null, "media_resolution": null, "text": "For analytical workloads, several robust alternatives to PostgreSQL offer enhanced performance and scalability, particularly for large datasets and complex queries. These alternatives often leverage architectures optimized for Online Analytical Processing (OLAP), such as columnar storage and massively parallel processing (MPP).\n\nSome of the best alternatives to PostgreSQL for analytics include:\n\n* **Cloud Data Warehouses:**\n * **Amazon Redshift:** A fully-managed, petabyte-scale data warehouse service that excels at analytical queries. It is an official connector for Metabase.\n * **Google BigQuery:** A fully-managed, serverless data warehouse known for its ability to process petabytes of data at high speed using SQL. Metabase officially supports BigQuery.\n * **Snowflake:** A cloud-native data platform offering a unified AI Data Cloud that eliminates data silos and simplifies architectures for storing, analyzing, and leveraging data at massive scale. It features an elastic compute engine for various workloads and is officially supported by Metabase.\n * **Firebolt:** A cloud data warehouse designed for sub-second response times on analytical queries, offering efficient data pruning through sparse indexes and simplified partition management.\n\n* **Open-Source OLAP Databases:**\n * **ClickHouse:** An open-source, column-oriented database management system built for high-speed analytical data reports in real-time using SQL queries. It is highly efficient and optimized for OLAP scenarios, often performing 100x faster than row-oriented databases for many queries. Metabase offers an official connector for ClickHouse.\n * **Apache Druid:** An open-source, column-oriented, distributed data store optimized for real-time analytics with streaming ingestion and time-series optimization. It\u0027s built for high-speed ingestion and aggregation at scale. Metabase officially supports Druid.\n * **Apache Pinot:** An open-source column-oriented distributed data store designed for ultra-low latency OLAP for user-facing analytics at scale.\n * **Apache Doris** (also referred to as Doris): An open-source, high-performance real-time analytical database that supports both batch and streaming data ingestion.\n\n* **Other Relational Databases (often used for analytics in specific contexts):**\n * **Microsoft SQL Server:** A widely used relational database that integrates advanced analytics capabilities, including in-database machine learning. Metabase provides an official connector for SQL Server.\n * **Oracle Database:** Known for its advanced analytics capabilities, high availability, and scalability for mission-critical applications. Metabase supports Oracle Database.\n * **MySQL:** A popular open-source relational database that offers a comprehensive suite of features for modern applications and can handle analytical workloads, especially for simpler use cases. Metabase officially supports MySQL.\n * **MariaDB:** A community-developed, commercially supported fork of MySQL, also officially supported by Metabase.\n * **SQLite:** A self-contained, serverless, and zero-configuration SQL database engine, suitable for embedded and ad-hoc analysis. Metabase has an official connector for SQLite.\n\nThese alternatives offer distinct advantages over PostgreSQL for analytics, primarily due to their architectural optimizations for read-heavy, complex analytical queries. Metabase, the brand under analysis, provides official connectors for many of these databases, simplifying their integration for business intelligence and data exploration.", "thought": null, "thought_signature": null, "video_metadata": null } ], "role": "model" }, "finish_message": null, "finish_reason": "STOP", "grounding_metadata": { "google_maps_widget_context_token": null, "grounding_chunks": [ { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF7UVAFYYuutIZ5qXycIeCsiW378zbMD-EEHgmLSOFXN94IueonwLejTPw2OR3GhL7qlLQLY3JZE0zmChPRuMCINZIuNek1_Ps89BlmmpZtq4k9thYsPN8zj_yAFuhdpac=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "sourceforge.net", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEZW9mzf1QCIwDJikrM2ZTtMeGTnXvHkWrx_egHMNE4loOIfVK4Zv3wy8LeCGnlmfRxAyzE3lo2VZZ4uGRJZtAwAeh7Wjj0cQDDF_2AJq06GgivhbClekRzpjCb62dLXQhs9jbE_01ulxnkSbCMWD_s4F1BfNbtkiwmY0o-HW8kZ1HG" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "slashdot.org", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHCsQ2LhDP4U4j8Qznh1ICEa7EIQwPSk0KUtuy5yTiN3xtX4_bZ77Vu1y8Lm5CpYXpdp2eu9uL5FBZBdQ24kUA8J-XK-TnvP6nPdP8PSWGtzwIfeJ1XnfGmp8BfvUIwDExImltpyKxOnwhMtvrPAg==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "firebolt.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE4QlfmzmyhW7vxdBog9ezlaJYiCvuqH3gXBGsk4GCjlUrBaEizwafKfBU6T-vNjkwSILeMhdqSjmOeWZmeETnBVVx7Hvt2RypjrZ-u5rlQxAJ-TCXlPFmM6tTLuWZ4DDkYZbW3iPPbkQpQNeoUuy0doa9vfs8fY93Hj3Q=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "clickhouse.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGUyw8xTwjF0fuSALM2hn0UZmr3gP-z614mFwstdmId5vjsBHTGeDs4CtmhOuoIjYRlJrNC0TMuc7356H4jlymBEv27J8nVgLtzWHvrGgzc75c=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "estuary.dev", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGAyHn52iUNfrqbBRFpNWOJtJzHUHKSDJQOk6Q71dBNDWLva2OtnL_XYfE5Yr-_X1ywUn3FJg-9KuPKqh0sYxRMqsV8w9ybSNDvG_Sj5E2xHvI8sPUtpmx2Xe0oFZvbsZ9rKcmN41r0COlsxl0=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "tinybird.co", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHQyOJhbHehf0KDEIb044luPLTpQj0b5msWOBergM10qj8FiyeZOt167PP8IIiKWKa8opFfd-3zg5e79l9JYPyBsGu28ce-imAvfe9lUuTqdYCE_8gK0BMQhdXPsZWyGtX-ut9lxP0wuIZQPYnV" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "tinybird.co", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEMX390EVmeU32uf49mMffQ9EpIK79jqpKrxf5SgGMvxfkflFbWnnFYqiHoqP8Y5yWfJBOENYZVbrcM-oy7Q7F0j3ZQVxABP-Sp_LqxRp_MP-d1lIFu8wBEMcNU4dzbC0-Pze1fIRoWdoOdGbf4e9wk3OcNqb_6gu46xrCBEOEN63mh2hEo8mAJO7m4XhWTIvWhZ_f0OJoxZ6ncpl9q996e" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "reddit.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGMbKj4sEZFkCW059KoEzT7K_Rgqxjhm37XExCYUqZU9FdhosMAHmAdaXTpFeEYV34Ysjn64uEvQ8kAS66US7MCMs3FyMKU-CvKYztdNtEYs-0_WBbn46qVFYoHXEkJilZJebrdxjjpi7F5sxc4Ymt2S0Ee4GsFU2rpwMO4-KwEz1Fbs9X2el0DsWS5aRMO-pp4UfD7wyKR9zIAS_83fw==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "g2.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFYQHjMPPjEQBqEBGbWr0anSJLBqy9b5G4RxYxexenn34bzXy8xt565gDGUwJkJB9qbrqXzCWUelCCP1KKqvI5nbM5VDAtO4xRidz5eFOPK0CwVqxd0epau4p0bpNXHcOvllWS-OA6UBcE5HnD86BVgNWF3C2CmzFTf" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "betterstack.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHPBk6hVdrmjPTyiy4lB4TQba-BlNdbVny2OoSaRFXbfFnMD6NOYl-PO0mfpXfgdwD-dir-s4pmWpIZ2O7gRJeYc7enJoB4YdI45e7W73dmYS-Mgz_CXx2n_Z-BZ9vJ3A9nzLpLS4rsrDEnLGB4ziNg9ZIloN9rW_LpGNe0CrG5PAKO" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHV9-DNDsdsF77S6XgTX6VLuto-6-GCTX8A7BymcdnVMQy_F-IQ-fZw229BA7Wp5Ey3T85iSxNRrWYerotJmfQ7dVC-JwCg3fFT9w3RqWQcCX55vWL5qb40lszbcQ4_GLDZ408p6Lsvr-OuwZXWNY8Zdsri" } } ], "grounding_supports": [ { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1 ], "segment": { "end_index": 590, "part_index": null, "start_index": 549, "text": "It is an official connector for Metabase." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 2 ], "segment": { "end_index": 777, "part_index": null, "start_index": 739, "text": "Metabase officially supports BigQuery." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 2, 1 ], "segment": { "end_index": 1081, "part_index": null, "start_index": 981, "text": "It features an elastic compute engine for various workloads and is officially supported by Metabase." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 3 ], "segment": { "end_index": 1280, "part_index": null, "start_index": 1086, "text": "* **Firebolt:** A cloud data warehouse designed for sub-second response times on analytical queries, offering efficient data pruning through sparse indexes and simplified partition management." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 2, 4, 5 ], "segment": { "end_index": 1663, "part_index": null, "start_index": 1610, "text": "Metabase offers an official connector for ClickHouse." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 6, 5, 7 ], "segment": { "end_index": 1932, "part_index": null, "start_index": 1897, "text": "Metabase officially supports Druid." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 6, 8 ], "segment": { "end_index": 2084, "part_index": null, "start_index": 1937, "text": "* **Apache Pinot:** An open-source column-oriented distributed data store designed for ultra-low latency OLAP for user-facing analytics at scale." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 5 ], "segment": { "end_index": 2256, "part_index": null, "start_index": 2089, "text": "* **Apache Doris** (also referred to as Doris): An open-source, high-performance real-time analytical database that supports both batch and streaming data ingestion." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 9, 0 ], "segment": { "end_index": 2554, "part_index": null, "start_index": 2499, "text": "Metabase provides an official connector for SQL Server." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 9, 0 ], "segment": { "end_index": 2735, "part_index": null, "start_index": 2701, "text": "Metabase supports Oracle Database." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 9, 0, 10 ], "segment": { "end_index": 2973, "part_index": null, "start_index": 2938, "text": "Metabase officially supports MySQL." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0 ], "segment": { "end_index": 3094, "part_index": null, "start_index": 2978, "text": "* **MariaDB:** A community-developed, commercially supported fork of MySQL, also officially supported by Metabase." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 9, 0, 10 ], "segment": { "end_index": 3278, "part_index": null, "start_index": 3232, "text": "Metabase has an official connector for SQLite." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 11 ], "segment": { "end_index": 3622, "part_index": null, "start_index": 3451, "text": "Metabase, the brand under analysis, provides official connectors for many of these databases, simplifying their integration for business intelligence and data exploration." } } ], "retrieval_metadata": null, "retrieval_queries": null, "search_entry_point": { "rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEgY5Z7Z-RjJ8rpdi3qJ4I_FgKiYLECS3JussvAhKPNz7VilFnsbgGIyw4xi4DW0BJmp4GeibyPfmjoHys-x4gpOIeNAvcnIlHKl8ReRpLYR5ka8gy2FXEeV6ABHD-6zudvG6YoZ7P7zG8oOH_oQrZ6uktAG5GZI45ZONi0PQi7Hlgw9nwsBZ1zTYXr-aPRZ2z4U1YtG0ijhjGlCYJcWmghUMIAC4hasxs-i3paM9Fk\"\u003eanalytical databases compatible with Metabase\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH3J981POthRkjKU4-GPMBYeO8ZgTtVfmWbCZScijqKfx1gy0ELsoFHVsy3ZePktkwemDT5e6N3K1uNgb0dId8eYowT4rr83xo0jk-tWM5Ixk-eUl87MYTrovmH_1mV6QlUtkedBLsw8ohYcL2QphSUCUGVaTx9Ebll-XNSBqyDVSf0y_Z2bpcmo0hQ3iibc6kkOrvLXCIRfDIFCTiuYOXE6t5pzpgvRHLapjv6Rg==\"\u003ebest alternatives to postgres for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHRz4aoGxFPF4AecShB46OHy6dmtB-Hj2qOT-8CKLzHnV10PM4eOCQ4Vb385OGN9f2oOU-Gjl6U20PgotCXyCmUXr_ILt-7orswoGAdpZNRbk-ePgAu9Xa7Q3E_ei9TLlKZsLVcG3MQz0_V-KbelVmltj8wOe6wc1XsQBurbFg1vXHdpP0wtNFnVceR_YTUBNZq19et07sp_22I3iL7nyNeh7yrH9ZCobB3b84=\"\u003eOLAP databases alternatives to PostgreSQL\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n", "sdk_blob": null }, "source_flagging_uris": null, "web_search_queries": [ "best alternatives to postgres for analytics", "OLAP databases alternatives to PostgreSQL", "analytical databases compatible with Metabase" ] }, "index": 0, "logprobs_result": null, "safety_ratings": null, "token_count": null, "url_context_metadata": null } ], "create_time": null, "model_version": "gemini-2.5-flash", "parsed": null, "prompt_feedback": null, "response_id": "wmSMaYbvEL7evdIPy7-XsA4", "sdk_http_response": { "body": null, "headers": { "alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000", "content-encoding": "gzip", "content-type": "application/json; charset=UTF-8", "date": "Wed, 11 Feb 2026 11:15:14 GMT", "server": "scaffolding on HTTPServer2", "server-timing": "gfet4t7; dur=8827", "transfer-encoding": "chunked", "vary": "Origin, X-Origin, Referer", "x-content-type-options": "nosniff", "x-frame-options": "SAMEORIGIN", "x-xss-protection": "0" } }, "usage_metadata": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 732, "candidates_tokens_details": null, "prompt_token_count": 69, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 69 } ], "thoughts_token_count": 473, "tool_use_prompt_token_count": 236, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 236 } ], "total_token_count": 1510, "traffic_type": null } }, "request_payload": { "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }, "retry_policy": { "base_backoff_s": 0.6, "max_retries": 3, "timeout_s": 60 }, "usage": { "cost_usd": 0.0018507, "input_tokens": 69, "model": "gemini-2.5-flash", "output_tokens": 732, "pricing_source": "local_price_table_v1", "provider": "gemini", "total_tokens": 1510 }, "usage_raw": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 732, "candidates_tokens_details": null, "prompt_token_count": 69, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 69 } ], "thoughts_token_count": 473, "tool_use_prompt_token_count": 236, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 236 } ], "total_token_count": 1510, "traffic_type": null } }

What was sent to the model?

{ "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }

Error json

null