Run item
gemini · Metabase · question_index=3
Question
What are the best alternatives to Postgres for analytics?
Answer
For analytics with Metabase, several alternatives to PostgreSQL offer enhanced performance and specialized features, primarily focusing on columnar storage and data warehousing. These options are designed to handle large datasets and complex analytical queries more efficiently than traditional row-oriented databases like PostgreSQL.
The best alternatives for analytics that are supported by Metabase include:
**Cloud Data Warehouses & Analytical Databases:**
* **Amazon Redshift** A fully-managed, petabyte-scale data warehouse service from Amazon Web Services, known for querying large datasets and integrating with other AWS services.
* **Google Cloud BigQuery** A serverless and highly scalable data warehouse that allows for managing and analyzing extensive datasets without infrastructure management.
* **Snowflake** A unified AI Data Cloud platform that provides seamless access to diverse datasets at massive scale and offers an elastic compute engine for various workloads.
* **ClickHouse** An open-source, column-oriented database management system built for high-performance analytical queries.
* **Druid** An open-source, distributed data store that combines features of data warehouses, time-series databases, and search technologies, optimized for real-time analytics.
* **Vertica (OpenText Analytics Database)** An analytics platform designed for fast, real-time data processing and advanced machine learning.
* **Databricks** A unified analytics platform built on Apache Spark, supporting various analytical workloads.
* **Teradata VantageCloud** A cloud-native data warehouse platform for enterprise-scale analytics, integrating structured and semi-structured data across cloud and hybrid environments.
* **Amazon Athena** A fully managed service for querying data directly in Amazon S3 using standard SQL.
**Query Engines (often used with data lakes or other data sources):**
* **SparkSQL** An Apache Spark module for SQL processing that can query various data sources.
* **Presto** An open-source distributed SQL query engine designed for running analytical queries against various data sources, including data lakes.
These alternatives excel in analytical tasks due to their architecture, which often includes columnar storage, data compression, parallel processing, and optimized query engines, making them ideal for business intelligence, data warehousing, and real-time reporting.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 10856,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "For analytics with Metabase, several alternatives to PostgreSQL offer enhanced performance and specialized features, primarily focusing on columnar storage and data warehousing. These options are designed to handle large datasets and complex analytical queries more efficiently than traditional row-oriented databases like PostgreSQL.\n\nThe best alternatives for analytics that are supported by Metabase include:\n\n**Cloud Data Warehouses \u0026 Analytical Databases:**\n* **Amazon Redshift** A fully-managed, petabyte-scale data warehouse service from Amazon Web Services, known for querying large datasets and integrating with other AWS services.\n* **Google Cloud BigQuery** A serverless and highly scalable data warehouse that allows for managing and analyzing extensive datasets without infrastructure management.\n* **Snowflake** A unified AI Data Cloud platform that provides seamless access to diverse datasets at massive scale and offers an elastic compute engine for various workloads.\n* **ClickHouse** An open-source, column-oriented database management system built for high-performance analytical queries.\n* **Druid** An open-source, distributed data store that combines features of data warehouses, time-series databases, and search technologies, optimized for real-time analytics.\n* **Vertica (OpenText Analytics Database)** An analytics platform designed for fast, real-time data processing and advanced machine learning.\n* **Databricks** A unified analytics platform built on Apache Spark, supporting various analytical workloads.\n* **Teradata VantageCloud** A cloud-native data warehouse platform for enterprise-scale analytics, integrating structured and semi-structured data across cloud and hybrid environments.\n* **Amazon Athena** A fully managed service for querying data directly in Amazon S3 using standard SQL.\n\n**Query Engines (often used with data lakes or other data sources):**\n* **SparkSQL** An Apache Spark module for SQL processing that can query various data sources.\n* **Presto** An open-source distributed SQL query engine designed for running analytical queries against various data sources, including data lakes.\n\nThese alternatives excel in analytical tasks due to their architecture, which often includes columnar storage, data compression, parallel processing, and optimized query engines, making them ideal for business intelligence, data warehousing, and real-time reporting.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "couchbase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE6HKg6NU8tdwzq3IgZeNj6Bn4EldSTcFuKZEcWKA7lDmWEhZKE4pnkbJ5HO5iIxF8OqlG39GvTnDSaLypGcoQ388D3CPc6o53roMA8uljYddpn_BPKOMZPnptf-CCWxxpHEB2l13lsG6KwcMJEe8i5YT1mNEiQ"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "datasturdy.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEgq3qL8uiYx69C8HIcLJ-M1VL8N8xcleTFueNHyuN2HxhodldSqN0nQiep_K3bH2ULYcWdvuJ2PWuGFXKa8eQ6hdm40C0iGc7RNduBJgBn2xvaCWJeF5H7W2G8jrGkUEv4kzpAVP16dKZpRG8EE2SmDsOF3iKQlxuGrAGNRdy9loQA"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "influxdata.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF43AJtT7FMvIZL08pSmCMsUHo1AZ6_-j1SnRn3nkz5A_OP6utEACsGU0YeVjO5LNC-HLYqyZ90WV8rzHU3b1bGTawGklC_nVmFjVfEyyF_x_QLHslEMnaUQ5ALEZPpFQp5Rn_I03VX_sb--x9g690="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "tinybird.co",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFUU-HdObkokZdkEFtu3F2dLYpP3x_0tQRejdYYPcEPUNVUdNihQ0N1H3IrK0WnZEs5yl2hdDeL8e_Eh_7-HH7qPBVVhsp6_gXH9LOTpPiT4eqLgU3_ZDp323AWtnUucdcvO-yL68a1vM3DZNIk7MzuMcv_"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "slashdot.org",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF4AnHkYGmzDc9RTVXDkFvApcwPQ62iZqUxS-nSFnCWs3r7dKeN3QrQm_p_dqVP4u0iyhY55XrW1XmZm-9Ym7Rw9j4qmrb1Okp38PHxQdV-UKJvgg1mIbtGDA-Mw14vpD2MbtpC3h0PwV3axYd-EOyIgk8X27k="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHBTNFxZ1CUPV_ls86NIddvCIfs5j2oLH_0UcQFQHr8T-joQCu1p_-OLLxCATahmc3V0jOU4LrojyY35_-8tQBiS_QItd8jS5HBOE_1zY3NhAR3VnLmvWVizCyebi5IicUY"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "sourceforge.net",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEpqGcds4bQngl7PyIZuQpM0D6IhU_tBxFOjSdPiUdm0prAqzXEORD2U_XmJmgwQZM7E3zMAe9poYIb9lOowaXgDW4kIbjqVWDldhoJa5WCkHYFu9MjESB_F16Ir16g9ig9DMkgD_z0IOHHMbUX7fuzjoVnCepOln28ORFl8VeVt0EpLXM="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "slashdot.org",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFElsqCQX1gd5nHClN7HO26RqL5sd5hp0gq85xxb6oJctuDbLaSO29NNorRxA5peRH7_ZWhqmGP5WnkKZwA1PVci-8e7WXW_U7eDBqFoIJzTbB2am5dwHedmUVrkEQ3C2M7Aygk99JbUDVBDFBh5ijBIKv-4A=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEMEmr3qeFIdnbrWVge6O6faWfWtS6qAdVQCFucvEAHqtDe29Ns8U9GFab3oBD6ZcSX392UWha6RQEOZnx2eMXUhe1TQ4uRYsHkojsBYX6jNYVYzwnQeuhIjQAvmkXzuWrhvBjmDE5r9KbtGOuy6SPxayxnNw=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFMbds2b9KwtUDjUONmuOftN4e7pN8DGZBGB-PAO5Z7BV6qNQ9W2moSu8jcFY6NSCQdMW1ReivnX7NglibzyHAMH80Ihzq9JfbP4UgDKR4g9d_HQZuoiVQR_u58bl0Nh-hCZ30Fuklp_zn0ru27l_kDSkJcrI_FGQaRAILuFZOq5QeVhBeKVqOKbuV_Q7xT4k0ZHiQ="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEQN7-nqaYAxafWTcM8BT7OtCdtDKFY7rk7USZfW1K07GtG7xPXRFVkl6QvIDWJ9FiF3Rgzs9HQxBOwDka3Df7wjgQbEf7rcRCac4_phcwVD9ei9emF_iRAr6bjfY4E0KblifGoCRfvniYrUNhuCkCuvU03JvZ82XrlwfsZceonGsd0f2JQ8F6TUrkvy0GdiFWN"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "medium.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG_9zIvImS5luKMJxbIAnOmJ-n8h-e7Xi3TKoZo9Z37Sx8-JoaN-uGEguEUdhB80O2Aj-618PfevDQsaggpJiSa58zV5oQ2SJIWMI5n3hbiP6yFq2Kxsteff91DUERakY5R55AB619o6eKsGIHaOCRQtDKEloGJkMlVusUZ95xAU-Zi2XE8P8rt9FqkxE7zOOjIWoSYOBdbzGbt"
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1,
2,
3
],
"segment": {
"end_index": 333,
"part_index": null,
"start_index": 178,
"text": "These options are designed to handle large datasets and complex analytical queries more efficiently than traditional row-oriented databases like PostgreSQL"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
6
],
"segment": {
"end_index": 642,
"part_index": null,
"start_index": 413,
"text": "**Cloud Data Warehouses \u0026 Analytical Databases:**\n* **Amazon Redshift** A fully-managed, petabyte-scale data warehouse service from Amazon Web Services, known for querying large datasets and integrating with other AWS services."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
6
],
"segment": {
"end_index": 813,
"part_index": null,
"start_index": 643,
"text": "* **Google Cloud BigQuery** A serverless and highly scalable data warehouse that allows for managing and analyzing extensive datasets without infrastructure management."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
7
],
"segment": {
"end_index": 991,
"part_index": null,
"start_index": 814,
"text": "* **Snowflake** A unified AI Data Cloud platform that provides seamless access to diverse datasets at massive scale and offers an elastic compute engine for various workloads."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
8
],
"segment": {
"end_index": 1116,
"part_index": null,
"start_index": 992,
"text": "* **ClickHouse** An open-source, column-oriented database management system built for high-performance analytical queries."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
8,
9
],
"segment": {
"end_index": 1295,
"part_index": null,
"start_index": 1117,
"text": "* **Druid** An open-source, distributed data store that combines features of data warehouses, time-series databases, and search technologies, optimized for real-time analytics."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
8
],
"segment": {
"end_index": 1439,
"part_index": null,
"start_index": 1296,
"text": "* **Vertica (OpenText Analytics Database)** An analytics platform designed for fast, real-time data processing and advanced machine learning."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
8
],
"segment": {
"end_index": 1551,
"part_index": null,
"start_index": 1440,
"text": "* **Databricks** A unified analytics platform built on Apache Spark, supporting various analytical workloads."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
5,
6,
7
],
"segment": {
"end_index": 1738,
"part_index": null,
"start_index": 1552,
"text": "* **Teradata VantageCloud** A cloud-native data warehouse platform for enterprise-scale analytics, integrating structured and semi-structured data across cloud and hybrid environments."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
8
],
"segment": {
"end_index": 1844,
"part_index": null,
"start_index": 1739,
"text": "* **Amazon Athena** A fully managed service for querying data directly in Amazon S3 using standard SQL."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
10,
8
],
"segment": {
"end_index": 2011,
"part_index": null,
"start_index": 1846,
"text": "**Query Engines (often used with data lakes or other data sources):**\n* **SparkSQL** An Apache Spark module for SQL processing that can query various data sources."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
10,
8,
9
],
"segment": {
"end_index": 2162,
"part_index": null,
"start_index": 2012,
"text": "* **Presto** An open-source distributed SQL query engine designed for running analytical queries against various data sources, including data lakes."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
11,
1,
2,
3
],
"segment": {
"end_index": 2430,
"part_index": null,
"start_index": 2164,
"text": "These alternatives excel in analytical tasks due to their architecture, which often includes columnar storage, data compression, parallel processing, and optimized query engines, making them ideal for business intelligence, data warehousing, and real-time reporting."
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFuL5CI3JHMl4XuRC734oMdp4iJCuORQYpwFzj-msz_cLBRgeQcBp7UXImuDHdMK_12LbdnaFpl6j8sbHsaE3s5DZYofzAr8cnJc9B7GGUwB5THQS_cgRCmsMWD4m7G1ixJUV5jRU6D9LCUKp-VoGWIbQqgFtmCXChN-_Q7zlSXOotqXnIXBFVA8VeOdkkAcl1BGgeaQ1g4wIc2kAgtj4CMAOYMQITtICnmbRgz-w==\"\u003emetabase supported databases for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFMAu5rEd1zsipEjjL84KIYDUIXLGJVHZY-ei8U2iNAJENF0hNH98A57lWry4g0LWXQfOpCCk0CFueYpve4x9L6kuWR1TkwVVSMQM0E3FM6TgyxMwGE1e3DU4hfMeq0JqM-118RRxsAMI975sOQ10xAvZkHd4xwOw8U_CPH21WbO05HpXdfQrgOcqKHGeew2D8lTqRwSxg-rIzp_qVr0p3ftz_4pWLaPWi2bmE=\"\u003edata warehouses compatible with metabase\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHVlZwUTp0ECTsHe-3jVqpCuIRJbcvCN5zljvihjgkpwn60WIekyEo24PA8o9L8Ncws0Dr_45xyATUerM1nBc4hZBy1-JCyY_-jKRHayyzasxao67KtJiUenhC75NKQhYz0OB_-hPNooNhLVqVE3yBDzrdf8mq1uoHMqh7Tr2kVdX8jGSd0D7aLSIofA9CmU-Y5PPKgJYInXFTKh3_WLvjhJo_TYXcUXfN10HA=\"\u003ebest postgres alternatives for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFQWSokMt-TruQywk6I9UbLTSaMmvNRB-5utDxMzAK84ZWBU9J5jiywhUpLz7lkMmK04Mf9KotuSv4uv6Yae7hJsh5Tl_RkBI0uz_PcssqMOyFEOhzxRFVQTEZiQBKkqueAPW-MTwkYXQR-lhoGVhlE_-hSKI3g3PTZDULn_N6J6zZNb07MJdKCls-jNSM5E7NXryoJ8Bfrouxam9vCHKbCpQSw\"\u003ecolumnar databases for analytics\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"best postgres alternatives for analytics",
"columnar databases for analytics",
"data warehouses compatible with metabase",
"metabase supported databases for analytics"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "_GOMaaHXJ-jZvdIP3djt6A0",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 11:11:56 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=10628",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 495,
"candidates_tokens_details": null,
"prompt_token_count": 77,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 77
}
],
"thoughts_token_count": 1254,
"tool_use_prompt_token_count": 201,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 201
}
],
"total_token_count": 2027,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: customer = Metabase\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0012606,
"input_tokens": 77,
"model": "gemini-2.5-flash",
"output_tokens": 495,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 2027
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 495,
"candidates_tokens_details": null,
"prompt_token_count": 77,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 77
}
],
"thoughts_token_count": 1254,
"tool_use_prompt_token_count": 201,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 201
}
],
"total_token_count": 2027,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: customer = Metabase\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null