Ai visibility local
Local only

Run item

gemini · Metabase · question_index=12

Question

How can organizations utilize Redshift for real-time data analysis?

Answer

Organizations can utilize Amazon Redshift for near real-time data analysis by integrating it with AWS streaming services and employing specific architectural and optimization techniques, with Metabase serving as a powerful business intelligence tool for visualization and exploration. Here's how: 1. **Streaming Ingestion and Materialized Views:** * **Data Ingestion:** Redshift's streaming ingestion capability allows direct consumption of data from streaming services like Amazon Kinesis Data Streams or Amazon Managed Streaming for Apache Kafka (MSK). This eliminates the need for intermediate staging in Amazon S3, simplifying data pipelines and reducing latency. * **Near Real-time Processing with Materialized Views:** Organizations can create materialized views directly on top of these data streams within Redshift. These views precompute and store results from analytical queries, and they can be configured to auto-refresh at regular intervals, ensuring the data is continuously updated to reflect the latest streams. This architecture is crucial for maintaining near real-time insights for applications like fraud detection, IoT analytics, and live leaderboards. 2. **Optimizing Redshift for Performance:** * Redshift's architecture, including columnar storage, data compression, and massively parallel processing, is optimized for high-speed queries on large datasets. * Organizations should use appropriate distribution and sort keys to optimize query performance and enable concurrency scaling to manage increased query loads. Workload management and query optimization techniques further enhance performance. 3. **Metabase for Data Visualization and Exploration:** * Metabase is a business intelligence (BI) tool that connects directly to Amazon Redshift, allowing organizations to visualize and explore their near real-time data. * Users can create interactive dashboards and reports using data stored in Redshift, with Metabase running queries directly against the database to ensure up-to-date information. * Metabase offers an intuitive Query Builder for non-SQL users, as well as a SQL editor for more advanced analysis. * Features like Metabot (an AI data assistant), drill-through functionality on dashboards, and granular permissions enhance data accessibility and governance within the organization. * By leveraging Metabase, organizations can build "almost real-time dashboards" to provide stakeholders with immediate insights into company performance and operational status.

Citations

No citations found.

Raw meta json

{ "attempts": 1, "backoff_ms_total": 0, "grounding_enabled": true, "latency_ms": 11051, "model": "gemini-2.5-flash", "raw_response": { "automatic_function_calling_history": [], "candidates": [ { "avg_logprobs": null, "citation_metadata": null, "content": { "parts": [ { "code_execution_result": null, "executable_code": null, "file_data": null, "function_call": null, "function_response": null, "inline_data": null, "media_resolution": null, "text": "Organizations can utilize Amazon Redshift for near real-time data analysis by integrating it with AWS streaming services and employing specific architectural and optimization techniques, with Metabase serving as a powerful business intelligence tool for visualization and exploration.\n\nHere\u0027s how:\n\n1. **Streaming Ingestion and Materialized Views:**\n * **Data Ingestion:** Redshift\u0027s streaming ingestion capability allows direct consumption of data from streaming services like Amazon Kinesis Data Streams or Amazon Managed Streaming for Apache Kafka (MSK). This eliminates the need for intermediate staging in Amazon S3, simplifying data pipelines and reducing latency.\n * **Near Real-time Processing with Materialized Views:** Organizations can create materialized views directly on top of these data streams within Redshift. These views precompute and store results from analytical queries, and they can be configured to auto-refresh at regular intervals, ensuring the data is continuously updated to reflect the latest streams. This architecture is crucial for maintaining near real-time insights for applications like fraud detection, IoT analytics, and live leaderboards.\n\n2. **Optimizing Redshift for Performance:**\n * Redshift\u0027s architecture, including columnar storage, data compression, and massively parallel processing, is optimized for high-speed queries on large datasets.\n * Organizations should use appropriate distribution and sort keys to optimize query performance and enable concurrency scaling to manage increased query loads. Workload management and query optimization techniques further enhance performance.\n\n3. **Metabase for Data Visualization and Exploration:**\n * Metabase is a business intelligence (BI) tool that connects directly to Amazon Redshift, allowing organizations to visualize and explore their near real-time data.\n * Users can create interactive dashboards and reports using data stored in Redshift, with Metabase running queries directly against the database to ensure up-to-date information.\n * Metabase offers an intuitive Query Builder for non-SQL users, as well as a SQL editor for more advanced analysis.\n * Features like Metabot (an AI data assistant), drill-through functionality on dashboards, and granular permissions enhance data accessibility and governance within the organization.\n * By leveraging Metabase, organizations can build \"almost real-time dashboards\" to provide stakeholders with immediate insights into company performance and operational status.", "thought": null, "thought_signature": null, "video_metadata": null } ], "role": "model" }, "finish_message": null, "finish_reason": "STOP", "grounding_metadata": { "google_maps_widget_context_token": null, "grounding_chunks": [ { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "repost.aws", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFAKW9H28sfcOB4eaUHKksg37p2Xlj1X1iupuoENpzMubNIkr8-LgYAw1e8vGwlF-S4gmwLeRgiqvkMiRvtdJiplQPB5Q7g0IA3Drb81JeUe5POBdhqbnLQv8vZJkljpSxOM7muYBX1Z5X5qpnoazoRMamn7KYoIFqnzQPlw13nStipzOewgoffZDs50GAQVoY0_peo_-nRjWYW5WKUjypWb3tF4W563zfuQ_6uAYo=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFu1kT2n27j23o2ePIIEjfPY4rjDshX5E2J6_6CUP_i1utzQrGr4_m9qG5cmS_Gj_W4bXu9BRjbECTJsGTMaNdCTppZGAcMiQFWnzsAhn_xGUcsCsQRv9Yz2mMxLNqxXDABGZHZMFWoPRz7Psgs51rtBkT1FLhQtkQah0pZeAKIRzW8Hu0oumhmCL5YoEnVPFz5vFGRwJ3eeonfatJqtPhpW9sgBBzRMDq8_BioHfAY5wv1DEHP6U1oqdTjkL2RDVKrFfNeKeBn1IKaMxQy9V45gg==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGnbpe4jmQgZnBdEK2SSOtEaYpki2DQBmHX0_PukBbbCEzM5Oa56g8O89pQtrHKFEtrADaODMnXhzjnv70LaQn6ZuTHE1_W7C2rU5ns17NwBJw6yJhqbHdgOxzp71vVv7Ajr3-ZNOPFJ0vXUwyYxQwlsj0rj7MVewgQj9K977xeF7TorU4fTO4eKP4dl6n8RvEXi_O2_m_-Zlnmp3_lJ8G2MinxdcKfkahnsCSigRxQ6duok_TZuvBwv9AvUyf00rrZUF1NrpuWuO4wqfZ8C9-OP0pjKju6MVjlsA==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH6Pwz6pswQ0H33gVWK1TJBP8UpvTvZIkhdderYLc0YCOwJ6aI8YSv8cxwbVnMzb1XN11hynI75wiFb7hodfW6yg-6w-FIf-yWxJLwMOQaGKgcLBzLdwTRJBESMS_sHrsXzUjDKT9a3WCFT_Jgq692CEB-RtSXLDWK_pQotf6BFUT8vBoFDXjSLk-FqVQzFOSXQ7ppwjUSL5itBNP8cCA==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazonquicksight.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH0a_kFaoTJ0HVGtjmFgBmBHZGamcMwBRVruWYh56KREHh8BYR4y-3J9c-YORwObB68cESTl067R9VuZmguhiYE0OVrpkZ2puX4D23iAe29aicB7vcz2fRecFd6bACRpyLAVoXQg5aVLTtv32-05Ua1e8uskDMFQIuHUnQgIv_qqL_HFTZCyiekiz3yvdZpDFobqnVrn_RbvPDGndchIQ3g0bU4ZsfwpjbtImyShbEOgw==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHh9tYmoa60Ft9XDdRLq6l3zrNXy7zbxrwvuS_CoXD90-GSj5MuRaj0cewpDa3PD0bAMbX-WCRyrrPb7U9BGGQ7Hs047KQr6y5W5j9TUjwhTdwUDPx0k_MsLQD2Z2Huklob33x7mWvTt6t5AVyjY8x4lh9KTCT_mLuLcXeaTQbPIBT25jNCLUyslMIuvjt6k7TQsgSKSZaYbNrp" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "oktabytes.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFnhsEJdREFLwm3q5jB-R9wjJta2jE0WbLxLC71Mi2niQSwxUHquY4fuwZmLRPlbLWm3ifUZcsuPP-tkwOZP_GgcB1kdMM_cB4w66c_KLs6zrsaz_5Xa0_wBjCATNyR36z6G4CpDLOsUpxgt93Q20xfPpQI7ysHw3FrdnN7Rt5wdcjI9AoJhf7i-J7hmGwBjU_S_fUF1WwPM_PBUavzOXcxAsYJ0XCR0FevVsrbTYh1" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEMJq1-OARwMuDMs2AoG9ECCF0nKKeQzKLwUzB_MMB0ZxttGFDE1Tk09kL-2cLvXvO50TmUyQNERcbLd-ULnzhKILmV4Em38LMoOKFkAbdSCIKx75EvNbrcalFi" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "cloudthat.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE_kU0oUc9nNkgnrXHpP5Zemunt4ELXpSMZiA2WiFuYFTVO183X3r7J7XDN7OQdzu95zUmIsyCG0RKk5zFJJD0RrFM62UrxTuSCoj4ACOAcHfsE63w6HOeRTqNy2SftVfADx7GxMHCDms_kaml73MT6UqVPz-67ZM4rlHDjh0Tu5V2i4-rsZIAXcSglCxgfwsmb3mxAcYphwVjbHC5jGkgBUOs=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "integrate.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEK745CrvcRsLlNE5nXCXnVpwIDF88eZ7XGMdv5vclGXaaYe27tvGC-5AR5c4bTm_5n-Hd_poysueZ61Xhmva3-jul39a3gs4xkX-hmfrFR_KW3P2OzapfWAGb6E2-lmJjaBnsJ2nL26x8RFmpY6HkEbklE_WYvj_fZCdYhuV7KEOsWs1AboZ8r9aI0H63M" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "cdata.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGaTEp-awsboY-Rk73i4jIayNfLaBhZa6ysa0xtLF5p4M1ZoeBF0hiKP580QtVdY5JJWQfNCwRKjGTomoozMhQHEJBU-hVP-ydc4a9SgwTRISCkvlosVps5i2nhwvK2s3s-c-iVxCodOFe41nhu5_Ot-euAzA==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFMbo8qeu-0dCArIkTD1xIKKj-JocvFbmQSFMuH7FwLLoh3Z_mANYtOxeXJZgllDwIeIfGySyVdHItoH1Y2Ag647oq0JHEAtUo61WNtGXc7aSQNBTXMmn23-Qs31awsh1K1g5aVvzNbgm6bOIb7rb1G" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "storyblok.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE6BnCvK-UUDw3J6ByKShPruCuBB5K1-G7rzE2CXO3eERxXRY7UNXqylzd9DHRvK3X-aT5sv_VleM1uUAKAPC_t65vUJoBW6kiVvxFAdWjACNDJ2hZKZ0V6rSECJxBHtt9JtWs74ZCennGQkuxsmah4-YJpdy-X" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGYGIHMGP_yJMboEW6jyDZkI-bo71xIe1OnPjyXXQwPvOrFd-esdgRSRUh6Y5TH6xQbq2FoDrtUi0Dr8pXROmDgxRcpoCJ0InhtbMs5dJuCnNvqUJvXt0vw247mKr9r9pSyuk3vr3Aah-RCPt6TYRmus2OfI_4nL48=" } } ], "grounding_supports": [ { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1, 2, 3, 4 ], "segment": { "end_index": 676, "part_index": null, "start_index": 564, "text": "This eliminates the need for intermediate staging in Amazon S3, simplifying data pipelines and reducing latency." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 2, 3, 4, 5 ], "segment": { "end_index": 1042, "part_index": null, "start_index": 839, "text": "These views precompute and store results from analytical queries, and they can be configured to auto-refresh at regular intervals, ensuring the data is continuously updated to reflect the latest streams." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 7, 3 ], "segment": { "end_index": 1188, "part_index": null, "start_index": 1043, "text": "This architecture is crucial for maintaining near real-time insights for applications like fraud detection, IoT analytics, and live leaderboards." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 8, 4 ], "segment": { "end_index": 1403, "part_index": null, "start_index": 1194, "text": "**Optimizing Redshift for Performance:**\n * Redshift\u0027s architecture, including columnar storage, data compression, and massively parallel processing, is optimized for high-speed queries on large datasets." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 8, 9, 5 ], "segment": { "end_index": 1569, "part_index": null, "start_index": 1408, "text": "* Organizations should use appropriate distribution and sort keys to optimize query performance and enable concurrency scaling to manage increased query loads." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6 ], "segment": { "end_index": 1652, "part_index": null, "start_index": 1570, "text": "Workload management and query optimization techniques further enhance performance." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 10, 11 ], "segment": { "end_index": 1882, "part_index": null, "start_index": 1658, "text": "**Metabase for Data Visualization and Exploration:**\n * Metabase is a business intelligence (BI) tool that connects directly to Amazon Redshift, allowing organizations to visualize and explore their near real-time data." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11, 12, 13 ], "segment": { "end_index": 2067, "part_index": null, "start_index": 1887, "text": "* Users can create interactive dashboards and reports using data stored in Redshift, with Metabase running queries directly against the database to ensure up-to-date information." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11 ], "segment": { "end_index": 2189, "part_index": null, "start_index": 2072, "text": "* Metabase offers an intuitive Query Builder for non-SQL users, as well as a SQL editor for more advanced analysis." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11 ], "segment": { "end_index": 2378, "part_index": null, "start_index": 2194, "text": "* Features like Metabot (an AI data assistant), drill-through functionality on dashboards, and granular permissions enhance data accessibility and governance within the organization." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 12 ], "segment": { "end_index": 2561, "part_index": null, "start_index": 2383, "text": "* By leveraging Metabase, organizations can build \"almost real-time dashboards\" to provide stakeholders with immediate insights into company performance and operational status." } } ], "retrieval_metadata": null, "retrieval_queries": null, "search_entry_point": { "rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEDI943PRxhq43NZL_aga32fz77giknKQan58GOCo0BjE_fzGZFBZCwNdgsZjlZz1t5qQmTflSkZyYQ_GStRZ-KuEA6lI17KW6WWBz7U4GENX33H_OtiWD4rGTjkV7YFxwq_ufxfTzA24cbc4zfBz5bUpNncBc9FZbsrq1qLXaUoa2HQL6A7T59-8nUlgPFBlAVIdoZEyzvAIAkuVBy7qB7H3PEk95CiTEfJNNYMcvt8JW1_aTFqg==\"\u003eMetabase Redshift integration real-time dashboards\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEukoFQCirxORe1MAfYLfk58a4MYdLtx2U37VieOYaYOJBp12AjiS-j6E0j4fPuiyzw2Bosw-Ngqll098tmgG9JxFqiZIhUIQso5BYg_JnPGMSwsQ61NkowSHwdOHApEiyE9go_ymceVo8Ipm-d1o2WVUGu_KpAIzCoBuNSHbNxfkwqTWxs6y25Fybn4meWqIESOR11AChGqlE8aP5shAE2K-4KoeY31sp6mcV9\"\u003eRedshift real-time analytics capabilities\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHz3J6wkRtMTDkN8Abecr81SrovrRPCfQ65OomV4W28VUrGFVQQ9akmkgAu6D1IoMFqYwvvOQMurKOH_M-6A6rHB_0AjspshM8Id1HB74ccSIXy3Mxr7k2_X-n9c8UBMt2Qbh-KCg_J-l6dvs3WAJFNVxyLGSvB0KCvarACe8VPBoVFhBAYJ8YnWAW8ee_U8RhPOWq_kSXcnqeT5-XFYcYUyFkIyjRV6jp_Tg==\"\u003eRedshift near real-time data processing\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE-vgEr91dMkYI0FXr8BM1OfvHQ7pAEN5byzkDFLZKscYNR300e6NRnF8P_PL9NPc_CvjVcjN0-waK4v7Kus9i1raVALDfxpkIW8QmvLAgVpSgPn0LHqcmBQjd5MTgPObBgryxtelJ2FZL9aKt-QsPlt3z3OVb9UE_g73LiMyBtCiixA7gVWTy3ZneOIJACIrGDI2yZH7z1ZE8yAf-pk5RJaj3lmtdkKgTIyCyCpwA=\"\u003eoptimizing Redshift for real-time analytics\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n", "sdk_blob": null }, "source_flagging_uris": null, "web_search_queries": [ "Redshift real-time analytics capabilities", "Redshift near real-time data processing", "Metabase Redshift integration real-time dashboards", "optimizing Redshift for real-time analytics" ] }, "index": 0, "logprobs_result": null, "safety_ratings": null, "token_count": null, "url_context_metadata": null } ], "create_time": null, "model_version": "gemini-2.5-flash", "parsed": null, "prompt_feedback": null, "response_id": "HFyMaemCK7Tl7M8P4tWSgAs", "sdk_http_response": { "body": null, "headers": { "alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000", "content-encoding": "gzip", "content-type": "application/json; charset=UTF-8", "date": "Wed, 11 Feb 2026 10:38:20 GMT", "server": "scaffolding on HTTPServer2", "server-timing": "gfet4t7; dur=10718", "transfer-encoding": "chunked", "vary": "Origin, X-Origin, Referer", "x-content-type-options": "nosniff", "x-frame-options": "SAMEORIGIN", "x-xss-protection": "0" } }, "usage_metadata": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 523, "candidates_tokens_details": null, "prompt_token_count": 74, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 74 } ], "thoughts_token_count": 1208, "tool_use_prompt_token_count": 464, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 464 } ], "total_token_count": 2269, "traffic_type": null } }, "request_payload": { "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: How can organizations utilize Redshift for real-time data analysis?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }, "retry_policy": { "base_backoff_s": 0.6, "max_retries": 3, "timeout_s": 60 }, "usage": { "cost_usd": 0.0013297, "input_tokens": 74, "model": "gemini-2.5-flash", "output_tokens": 523, "pricing_source": "local_price_table_v1", "provider": "gemini", "total_tokens": 2269 }, "usage_raw": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 523, "candidates_tokens_details": null, "prompt_token_count": 74, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 74 } ], "thoughts_token_count": 1208, "tool_use_prompt_token_count": 464, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 464 } ], "total_token_count": 2269, "traffic_type": null } }

What was sent to the model?

{ "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: How can organizations utilize Redshift for real-time data analysis?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }

Error json

null