Run item
gemini · tableau · question_index=3
Question
What are the best alternatives to Postgres for analytics?
Answer
For robust analytical workloads, several alternatives to PostgreSQL offer enhanced performance and scalability, particularly when used with tools like Metabase and Tableau.
Leading alternatives for analytics include:
* **Cloud Data Warehouses:** These are often fully managed and optimized for large-scale analytical queries. Examples include:
* **Amazon Redshift** is a cloud-native data warehouse recognized for its ability to query petabytes of structured and semi-structured data using standard SQL. It's also known for continuous performance improvements. Metabase officially supports Amazon Redshift.
* **Google Cloud BigQuery** is a serverless, fully managed data warehouse that provides fast performance even with massive datasets. It eliminates the need for infrastructure management, allowing users to focus on data analysis. BigQuery is also an official connector for Metabase.
* **Snowflake** is a cloud-native data warehouse that offers modern data warehousing capabilities and supports a wide range of analytical workloads. Snowflake is compatible with Metabase.
* **Teradata VantageCloud** is an enterprise-scale, cloud-native data warehouse platform designed for high-performance querying, advanced analytics, and AI/ML integration across hybrid and multi-cloud environments. Teradata is also supported by Metabase.
* **Specialized Analytical Databases:** These databases are purpose-built for analytics, often using columnar storage and optimized query engines.
* **ClickHouse** is an open-source analytical database management system known for its speed and resource efficiency in handling large volumes of data for real-time analytics, interactive slicing and dicing, and powering customer-facing applications. It can offer significantly faster queries and reduced disk space compared to PostgreSQL for analytical workloads. Metabase has an official connector for ClickHouse.
* **Firebolt** is a SaaS data warehouse specifically designed for sub-second response times on analytical queries. It's presented as a scalable alternative for PostgreSQL-based analytics workloads, leveraging object storage for cost savings and scalability. Firebolt is available as a community-supported connector for Metabase.
* **DuckDB** is a lightweight, in-process analytical database, often referred to as the "SQLite for analytics." It features vectorized query execution and column-oriented storage, making it efficient for large-scale data analysis and integrates well with data science tools. DuckDB is a community-supported connector for Metabase.
* **Other Relational Databases (with analytical strengths):** While not exclusively analytical, some traditional relational databases offer robust features for analytics.
* **Microsoft SQL Server** is a strong alternative that integrates advanced analytics capabilities, including in-database machine learning. Metabase offers official support for Microsoft SQL Server.
* **Oracle Database** provides advanced analytics capabilities, high availability, and scalability for mission-critical applications. Oracle Database is also officially supported by Metabase.
* **MySQL** can be a simpler alternative for straightforward analytical workloads, often performing faster with read-only commands. MySQL is officially supported by Metabase.
* **MariaDB** is another relational database that Metabase officially supports.
* **Time-Series Databases:** For specific use cases involving time-series data, specialized databases excel.
* **InfluxDB** is built for high-performance handling of time-series data, offering efficient compression and query performance, ideal for real-time analytics.
Both Metabase and Tableau offer extensive connectivity to various databases and data warehouses, including many of the alternatives listed above.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 9738,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "For robust analytical workloads, several alternatives to PostgreSQL offer enhanced performance and scalability, particularly when used with tools like Metabase and Tableau.\n\nLeading alternatives for analytics include:\n\n* **Cloud Data Warehouses:** These are often fully managed and optimized for large-scale analytical queries. Examples include:\n * **Amazon Redshift** is a cloud-native data warehouse recognized for its ability to query petabytes of structured and semi-structured data using standard SQL. It\u0027s also known for continuous performance improvements. Metabase officially supports Amazon Redshift.\n * **Google Cloud BigQuery** is a serverless, fully managed data warehouse that provides fast performance even with massive datasets. It eliminates the need for infrastructure management, allowing users to focus on data analysis. BigQuery is also an official connector for Metabase.\n * **Snowflake** is a cloud-native data warehouse that offers modern data warehousing capabilities and supports a wide range of analytical workloads. Snowflake is compatible with Metabase.\n * **Teradata VantageCloud** is an enterprise-scale, cloud-native data warehouse platform designed for high-performance querying, advanced analytics, and AI/ML integration across hybrid and multi-cloud environments. Teradata is also supported by Metabase.\n\n* **Specialized Analytical Databases:** These databases are purpose-built for analytics, often using columnar storage and optimized query engines.\n * **ClickHouse** is an open-source analytical database management system known for its speed and resource efficiency in handling large volumes of data for real-time analytics, interactive slicing and dicing, and powering customer-facing applications. It can offer significantly faster queries and reduced disk space compared to PostgreSQL for analytical workloads. Metabase has an official connector for ClickHouse.\n * **Firebolt** is a SaaS data warehouse specifically designed for sub-second response times on analytical queries. It\u0027s presented as a scalable alternative for PostgreSQL-based analytics workloads, leveraging object storage for cost savings and scalability. Firebolt is available as a community-supported connector for Metabase.\n * **DuckDB** is a lightweight, in-process analytical database, often referred to as the \"SQLite for analytics.\" It features vectorized query execution and column-oriented storage, making it efficient for large-scale data analysis and integrates well with data science tools. DuckDB is a community-supported connector for Metabase.\n\n* **Other Relational Databases (with analytical strengths):** While not exclusively analytical, some traditional relational databases offer robust features for analytics.\n * **Microsoft SQL Server** is a strong alternative that integrates advanced analytics capabilities, including in-database machine learning. Metabase offers official support for Microsoft SQL Server.\n * **Oracle Database** provides advanced analytics capabilities, high availability, and scalability for mission-critical applications. Oracle Database is also officially supported by Metabase.\n * **MySQL** can be a simpler alternative for straightforward analytical workloads, often performing faster with read-only commands. MySQL is officially supported by Metabase.\n * **MariaDB** is another relational database that Metabase officially supports.\n\n* **Time-Series Databases:** For specific use cases involving time-series data, specialized databases excel.\n * **InfluxDB** is built for high-performance handling of time-series data, offering efficient compression and query performance, ideal for real-time analytics.\n\nBoth Metabase and Tableau offer extensive connectivity to various databases and data warehouses, including many of the alternatives listed above.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "sourceforge.net",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEINBCbCaHyUrr6BGDZY-klndKYCkhTwO5wO6m--Kw8d6A343O61OKynXjy8NzibIeV_wdtg9w7dS46ONC4aJFsvCGLyT1xpS4KoCjzBwQ9_1haaE5I84MwgRbBOVhPhfGAILV_aYwTyN2KU6SGJ9cdsUc909R-9g8hF5wn1biQGkLi8S8="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEsDWU94ijvdOQKi95vjsXfXNu2GYznsUu1S9EuwpwObEox5x2x9SeRjClKLm-87Ix8rKCFgUg8MWwPILUnhk98WbwpXawYLslQm700c0FrCdk6Obpf4w4Hgzab1PKgWR0Y"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "clickhouse.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHKZJ4_BJE8UE3qZni2NooL7DdjUVgNHXR8e_acV1R4VLcX_6Zy_Npbxd1g9Sc9AsyReNw5OzSudD2ocrLfURHTuQUnS01bjo5PLm1qqKS5DEg-w6CZk5E0bv5yR5sKKKLNjrG8l8z_"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "firebolt.io",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEAm8GvdGNRdVon1oPy9T-dLzlNfIjdjclfYQKaQ2s3Mcw7OLHSJVzmcMb9VtYQM4wnlasMkhgPoCyt8-soIXexgaPQHXVS2qC0eWnKvQKGRGpZkzk7qs1TFHrQNzaFd1YJ3yLVF31QiH9sgZUS5bKp_UVSydBW0lxfEuFH"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "medium.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQESUBKefZM_wpDcTZuJCuD6RaYDY6xepGBXlNCQUmkSjKn3BOAXI_uggYdsau1epJQK60icaJJKKvuWfyD4szEpbHfjVj-VtYaO_GVHSUy-i9BOM5hEqwQ7_v0iF3aCFrwhyHtYZOeC8hECQF_qxf8ab6iDtHzzy9IhRYD-IMeaNxe0YKZvdgOdWrW6bl5NulrTaakxarEDezOYQNl7OIJL_5QsJd3FR4CVpCO7N4KX58jOZfpciGgRIMif8Y4RLQ=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "g2.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH7VF6acbWGy71Ss-e_VlRUvbzzbXzraGST44aWeyepovZzNclcI4h58ktlsSY3WTeG_KQrAtLFpz4fZeEnpkd5lIYip-xZsgluAg--mza6gajShYTv27VB2CGVgYBSmGno8ACFdMbJUBdjXdQAyIlCLSDXsoe1hCBUrg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "stratascratch.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFIQcCFXSAnWZvo6QW4pxGKBjftOSTrsYwMMcoKTRANHt-s-t_V063kWHoaH5hE-mB-4CMmG3vUxHr6DCSJNKeb5BQjWX3-Vej6rP8VBGcVZzTf-08bePcSh-PowZvVknEGlaoG6kT46Pb65BLjKxKd19KNzK55OdgiIeaKEupdidEGf7gG0xkP3lqn8FM="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "data-sleek.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQESyYjOafTMNeBLU_dBzKyP0BVpJaULNzIPvMD6MYRLxpUaWhaMS9gaaHbYUA8QpIVCDrpm0JYZTVYrAcz4gdkU4W-tlJr4VmZ_Jv_V5Hvto64eQgvqXeO-pDT5-s1L-r_x-X9JsPHDjuZOQiJY5V3Z0Vl460o_-Z0YNniHA__844m9e6vi8SQ3Jdo="
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 569,
"part_index": null,
"start_index": 514,
"text": "It\u0027s also known for continuous performance improvements"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 615,
"part_index": null,
"start_index": 571,
"text": "Metabase officially supports Amazon Redshift"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 850,
"part_index": null,
"start_index": 756,
"text": "It eliminates the need for infrastructure management, allowing users to focus on data analysis"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 903,
"part_index": null,
"start_index": 852,
"text": "BigQuery is also an official connector for Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 1097,
"part_index": null,
"start_index": 1060,
"text": "Snowflake is compatible with Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 1318,
"part_index": null,
"start_index": 1103,
"text": "* **Teradata VantageCloud** is an enterprise-scale, cloud-native data warehouse platform designed for high-performance querying, advanced analytics, and AI/ML integration across hybrid and multi-cloud environments"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 1358,
"part_index": null,
"start_index": 1320,
"text": "Teradata is also supported by Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2
],
"segment": {
"end_index": 1879,
"part_index": null,
"start_index": 1767,
"text": "It can offer significantly faster queries and reduced disk space compared to PostgreSQL for analytical workloads"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 1930,
"part_index": null,
"start_index": 1881,
"text": "Metabase has an official connector for ClickHouse"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
3
],
"segment": {
"end_index": 2194,
"part_index": null,
"start_index": 2053,
"text": "It\u0027s presented as a scalable alternative for PostgreSQL-based analytics workloads, leveraging object storage for cost savings and scalability"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 2265,
"part_index": null,
"start_index": 2196,
"text": "Firebolt is available as a community-supported connector for Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4
],
"segment": {
"end_index": 2546,
"part_index": null,
"start_index": 2271,
"text": "* **DuckDB** is a lightweight, in-process analytical database, often referred to as the \"SQLite for analytics.\" It features vectorized query execution and column-oriented storage, making it efficient for large-scale data analysis and integrates well with data science tools"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 2602,
"part_index": null,
"start_index": 2548,
"text": "DuckDB is a community-supported connector for Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5
],
"segment": {
"end_index": 2922,
"part_index": null,
"start_index": 2782,
"text": "* **Microsoft SQL Server** is a strong alternative that integrates advanced analytics capabilities, including in-database machine learning"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 2981,
"part_index": null,
"start_index": 2924,
"text": "Metabase offers official support for Microsoft SQL Server"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5
],
"segment": {
"end_index": 3121,
"part_index": null,
"start_index": 2987,
"text": "* **Oracle Database** provides advanced analytics capabilities, high availability, and scalability for mission-critical applications"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 3179,
"part_index": null,
"start_index": 3123,
"text": "Oracle Database is also officially supported by Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
6
],
"segment": {
"end_index": 3317,
"part_index": null,
"start_index": 3185,
"text": "* **MySQL** can be a simpler alternative for straightforward analytical workloads, often performing faster with read-only commands"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 3360,
"part_index": null,
"start_index": 3319,
"text": "MySQL is officially supported by Metabase"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 3446,
"part_index": null,
"start_index": 3366,
"text": "* **MariaDB** is another relational database that Metabase officially supports"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4
],
"segment": {
"end_index": 3724,
"part_index": null,
"start_index": 3564,
"text": "* **InfluxDB** is built for high-performance handling of time-series data, offering efficient compression and query performance, ideal for real-time analytics"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1,
7
],
"segment": {
"end_index": 3871,
"part_index": null,
"start_index": 3727,
"text": "Both Metabase and Tableau offer extensive connectivity to various databases and data warehouses, including many of the alternatives listed above"
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHQKbN8je5Pv4V34QkWo0BHZCjE7Mj0Vm9k47V2ELsK_lo1u3z18bJrQCYOTH3IkcCNy3YHWQMZ0MgDo1VD4v-wiccZnJCh51bs7bOKhA_HJ4AM22bt9gAYwVnsfaStsJsnkaoxbrwTLDGNqzJ6y66hJFLh2gj0vaOPDgudJpdqWl3imL2E5ttxNeGarPD_HJbUxvjVUN0kJfCQ7C5uBJRCgDFgOJ41DAJW06CuPV7G\"\u003edatabases for analytics compared to postgres\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFFv43SyEdWmKcLLucyUnchO9F_KKKtL0d_lkR3okwIRG449Ci97L15TQSCguOPr2NSx3HjzKxO4BmIZqzvaOXXia9xwzczIVoi0hPWYpWAKBNosfATvVxM4vyL5WQA4U0vAj1N5EwiwJri1azQg8_itaMWsnQPoqQoK1ujEj_6EvDcwMoZVI8PYdd1KNVO2pDI5zlpTRCltPwJnRYwJU84zBbMLftWlPUcJB1aLmE=\"\u003ebest alternatives to postgres for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHovZCFpzHYqUyMrg0qi_rvSzNaPyYMuYLA5-DAjQbOI2dmVVh7J7vUN8TeIeDp2iZHpIVYkF-fFx7JE7MMs_T6iJEoXXXsRwIkhwDZ0DhqOFDmHwluh6xaHmZit6bEWGwvAOQQTz8U_NhEP-5qwm8K8xr_zSOEbB3I7HSMjSGPJAdxiJ2d0Fg5IcFC2wN7MZ_ibyYP0c2x1Qq3vyi-cIRW9gwM0Ud27Ey1IDzB5VQkRDHsEshHsP0T\"\u003edata warehouses compatible with Metabase and Tableau\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"best alternatives to postgres for analytics",
"databases for analytics compared to postgres",
"data warehouses compatible with Metabase and Tableau"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "JmSMaZy-MP3_nsEP6frO0QQ",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 11:12:38 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=9502",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 761,
"candidates_tokens_details": null,
"prompt_token_count": 76,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 76
}
],
"thoughts_token_count": 308,
"tool_use_prompt_token_count": 195,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 195
}
],
"total_token_count": 1340,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: competitor = tableau\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0019252999999999998,
"input_tokens": 76,
"model": "gemini-2.5-flash",
"output_tokens": 761,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 1340
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 761,
"candidates_tokens_details": null,
"prompt_token_count": 76,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 76
}
],
"thoughts_token_count": 308,
"tool_use_prompt_token_count": 195,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 195
}
],
"total_token_count": 1340,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: competitor = tableau\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null