Ai visibility local
Local only

Run item

gemini · Metabase · question_index=2

Question

What are some comparable tools to dbt in the analytics space?

Answer

When looking for tools comparable to dbt in the analytics space, it's helpful to consider their primary function: data transformation. dbt (data build tool) is widely known for bringing software engineering best practices, such as version control, testing, and documentation, to SQL-based data transformation within data warehouses. Comparable tools can be categorized into several groups: **1. Code-First Transformation Tools (similar to dbt's SQL-centric approach):** These tools emphasize SQL or code for defining data transformations, often with strong features for version control, testing, and dependency management. * **SQLMesh (Fivetran)**: Positions itself as a scalable and predictable alternative to dbt for SQL-based transformations, using a declarative approach with built-in dependency tracking, testing, and environment management. It can also inspect your SQL to figure out your Directed Acyclic Graph (DAG) without needing source and ref macros, and is backward compatible with dbt. * **Google Cloud Dataform**: Often described as the closest alternative to dbt, especially for teams within the Google Cloud ecosystem. It's integrated with BigQuery and allows users to build modular SQL-based transformation pipelines, manage dependencies, and schedule runs. Dataform supports features like `ref()` for dependency management, similar to dbt, and includes built-in testing and documentation. * **Datacoves**: Offers a flexible and secure alternative to dbt Cloud, providing built-in Airflow orchestration and a customizable in-browser VS Code IDE. * **Bruin Data**: A modern SQL-based data modeling framework designed to simplify development, testing, and environment-aware deployments. * **AWS Glue**: A serverless data integration service that supports Python-based ETL and transformation workflows. **2. Visual ETL/ELT Tools (often with low-code/no-code interfaces):** These platforms provide graphical user interfaces for building data pipelines, making them accessible to users who prefer less coding. Many still perform transformations within the data warehouse. * **Coalesce**: A cloud-native transformation, catalog, and governance platform that offers a visual and modular development environment supporting both code-first SQL users and GUI-driven workflows. * **Matillion**: A cloud-native ETL (extract, transform, load) and data transformation platform with a visual interface, supporting major cloud data warehouses. It can also incorporate dbt workflows with a native dbt Core component. * **Talend (Qlik)**: An integration platform known for its data quality and governance features, offering both open-source roots and enterprise offerings. It provides a visual transformation studio to design complex data workflows. * **Informatica**: An enterprise data integration platform with extensive ETL capabilities, a wide array of connectors, data quality tooling, and metadata-driven workflows. * **Alteryx**: A self-service analytics platform that provides data blending, preparation, and advanced analytics capabilities. It is built for data analysts and business users who need to clean, shape, and transform datasets without writing SQL or code. * **Azure Data Factory**: Microsoft-native orchestration for cloud and hybrid data pipelines, offering managed ETL/ELT functionality within the Azure ecosystem. * **SQL Server Integration Services (SSIS)**: A versatile ETL tool from Microsoft, particularly strong for complex data integration workflows and diverse data sources within a Microsoft SQL Server environment. **3. Data Orchestration and Workflow Management Tools:** While not solely focused on transformation, these tools can manage and schedule data transformation tasks, often integrating with dbt or other transformation engines. * **Apache Airflow**: An open-source platform for orchestrating complex data workflows and pipelines. While its focus is workflow orchestration, it can schedule and manage data transformation tasks alongside other tasks within larger pipelines. * **Dagster**: A data orchestration and transformation framework. * **Prefect**: Another orchestration framework that can include Python or SQL transformation steps. * **Orchestra**: A control plane for data workflows that can orchestrate dbt runs, offering a scalable compute engine, observability, and metadata. The best choice among these alternatives often depends on your team's existing skill set, specific governance and security requirements, preferred cloud platform, and the complexity of your data transformation needs.

Citations

No citations found.

Raw meta json

{ "attempts": 1, "backoff_ms_total": 0, "grounding_enabled": true, "latency_ms": 7475, "model": "gemini-2.5-flash", "raw_response": { "automatic_function_calling_history": [], "candidates": [ { "avg_logprobs": null, "citation_metadata": null, "content": { "parts": [ { "code_execution_result": null, "executable_code": null, "file_data": null, "function_call": null, "function_response": null, "inline_data": null, "media_resolution": null, "text": "When looking for tools comparable to dbt in the analytics space, it\u0027s helpful to consider their primary function: data transformation. dbt (data build tool) is widely known for bringing software engineering best practices, such as version control, testing, and documentation, to SQL-based data transformation within data warehouses.\n\nComparable tools can be categorized into several groups:\n\n**1. Code-First Transformation Tools (similar to dbt\u0027s SQL-centric approach):**\nThese tools emphasize SQL or code for defining data transformations, often with strong features for version control, testing, and dependency management.\n\n* **SQLMesh (Fivetran)**: Positions itself as a scalable and predictable alternative to dbt for SQL-based transformations, using a declarative approach with built-in dependency tracking, testing, and environment management. It can also inspect your SQL to figure out your Directed Acyclic Graph (DAG) without needing source and ref macros, and is backward compatible with dbt.\n* **Google Cloud Dataform**: Often described as the closest alternative to dbt, especially for teams within the Google Cloud ecosystem. It\u0027s integrated with BigQuery and allows users to build modular SQL-based transformation pipelines, manage dependencies, and schedule runs. Dataform supports features like `ref()` for dependency management, similar to dbt, and includes built-in testing and documentation.\n* **Datacoves**: Offers a flexible and secure alternative to dbt Cloud, providing built-in Airflow orchestration and a customizable in-browser VS Code IDE.\n* **Bruin Data**: A modern SQL-based data modeling framework designed to simplify development, testing, and environment-aware deployments.\n* **AWS Glue**: A serverless data integration service that supports Python-based ETL and transformation workflows.\n\n**2. Visual ETL/ELT Tools (often with low-code/no-code interfaces):**\nThese platforms provide graphical user interfaces for building data pipelines, making them accessible to users who prefer less coding. Many still perform transformations within the data warehouse.\n\n* **Coalesce**: A cloud-native transformation, catalog, and governance platform that offers a visual and modular development environment supporting both code-first SQL users and GUI-driven workflows.\n* **Matillion**: A cloud-native ETL (extract, transform, load) and data transformation platform with a visual interface, supporting major cloud data warehouses. It can also incorporate dbt workflows with a native dbt Core component.\n* **Talend (Qlik)**: An integration platform known for its data quality and governance features, offering both open-source roots and enterprise offerings. It provides a visual transformation studio to design complex data workflows.\n* **Informatica**: An enterprise data integration platform with extensive ETL capabilities, a wide array of connectors, data quality tooling, and metadata-driven workflows.\n* **Alteryx**: A self-service analytics platform that provides data blending, preparation, and advanced analytics capabilities. It is built for data analysts and business users who need to clean, shape, and transform datasets without writing SQL or code.\n* **Azure Data Factory**: Microsoft-native orchestration for cloud and hybrid data pipelines, offering managed ETL/ELT functionality within the Azure ecosystem.\n* **SQL Server Integration Services (SSIS)**: A versatile ETL tool from Microsoft, particularly strong for complex data integration workflows and diverse data sources within a Microsoft SQL Server environment.\n\n**3. Data Orchestration and Workflow Management Tools:**\nWhile not solely focused on transformation, these tools can manage and schedule data transformation tasks, often integrating with dbt or other transformation engines.\n\n* **Apache Airflow**: An open-source platform for orchestrating complex data workflows and pipelines. While its focus is workflow orchestration, it can schedule and manage data transformation tasks alongside other tasks within larger pipelines.\n* **Dagster**: A data orchestration and transformation framework.\n* **Prefect**: Another orchestration framework that can include Python or SQL transformation steps.\n* **Orchestra**: A control plane for data workflows that can orchestrate dbt runs, offering a scalable compute engine, observability, and metadata.\n\nThe best choice among these alternatives often depends on your team\u0027s existing skill set, specific governance and security requirements, preferred cloud platform, and the complexity of your data transformation needs.", "thought": null, "thought_signature": null, "video_metadata": null } ], "role": "model" }, "finish_message": null, "finish_reason": "STOP", "grounding_metadata": { "google_maps_widget_context_token": null, "grounding_chunks": [ { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "matillion.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHCM_2UD3pvkJC_6CSqoiPUOY3ohtBqxdqIRmKBHvSA4UXY-NOs_y0ZAAmrXcDYv1vwRuUis1Oz67aTAqJ8YdKHCYQFrNcIOoSSzYrY_FFhMKugi8hGUEPk674wMP9S61uL97CGNJB4oB3j6mLrkGii" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "coalesce.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGBGOU11z4dtalvxdJBEMwFMrYel9bsl0fOpJErj8CwGOSHUV7a8qKSQcm8uCNvCyqlIncimkhVW1M34LUEqcLVcmdb-scHLNABH-nTRnagHmr8sUhyLuDnLhH50Fy_-5VBAheOdhUX7dizFhQT70BG4KunFNNJAo4pIFvBGEY4t6GqdYODrZW3UQVoQKuKsB46wCisOmEgpba9eA==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "greenmountaindatasolutions.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGehxQCe7GmozWR3cw5Ai7ePGyMT_xD_XvcnfzpJcoRWPXXq6M-K5IO-buKSZUhLi78nWV1Zhm_LKmhkxz7iVcIBxpEVfmubho5fHpik21jx1gTPYdBwdEMJS7ks21PR4CEDvMh-VRmMPfHfjIfqTPRAVvo6NkM4sxXT2wuXlEkIfTfPuD8ZQE0ywmFMkeE9w==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "estuary.dev", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEdZl4raSviv8oYajt7K0cg58fSniUJO_fp3PWmY-ym4W7oaakiv9x2mGj-OaccCsU_KE2h1S9oeCNrzlamQLmJzohtCd_WM8VBaBaSWlZKC6uMnYE7juw8QHUVXbf3HbVBy6-iyw==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "getdbt.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHAF6l8xzZiCoVDgDQhttwBfBZjd-pLMT28HFEx3YDM2kVQjNEHrXAoEKM4kbeNe0imnE4BeDTrlbMXXpTCQrIvyMlz3VrC-c7wi_uxptCSP7JtqDaKNWI2az0ui_sLV1nraEiJdHMrn6cnw5oc8DDRbJofqXmzOTkDfBMbOMYYuA==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "datacoves.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEkRp5PaLyHTiJnHhDqE-TWlUYo6qAOAgzz4r3UYMkSlRfT_viG5xme_2LJVXX5Pv4B_rJ5439ch9w4VkpAhsQhPJAuzKxSwRGmn2o-AHNlNu23C9TCl_M_sHGDB_HVx5_n3bS8MK0=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "getorchestra.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGTG06l0XMNEw4hPlsT7uiIOMWs4SSFc8PpqYfqMAxhjkRs90WZKrimVwF_DJQNFyyu5ziGsoTF1WwoQVZuPVLclrHTLzQeyu1AgA5g4KwvvEg1dXrs3mpKcoLjEWhYkohDWw4fwfcmT7qWzIpRrmSvgZWVEde5s8LQz1Pc07CBkGz6w8WWrjrqKT3PHwg77NU3AgWC" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "gartner.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGDhMnlk2cX6ELwJmvBRFAMCPKGS8fUPGiO00_zkQjJ3RH4ICHtbn0fj2lRHxdf-m-eGxw0GbPtxEgjhCFM27wxxx2gxI3BxOJn42WHD2qmpvBVOv-6_3XN_ypg2C34gO_tmQZ-P3DyADlpeVkSENIvGXtsAIiC2CQ8LyqpaByhLqlOtCPc5Qvra190gHGkkxcCjLObxHoh9MpOJz0qNDpwdrobRyP3" } } ], "grounding_supports": [ { "confidence_scores": null, "grounding_chunk_indices": [ 0 ], "segment": { "end_index": 331, "part_index": null, "start_index": 135, "text": "dbt (data build tool) is widely known for bringing software engineering best practices, such as version control, testing, and documentation, to SQL-based data transformation within data warehouses" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 850, "part_index": null, "start_index": 626, "text": "* **SQLMesh (Fivetran)**: Positions itself as a scalable and predictable alternative to dbt for SQL-based transformations, using a declarative approach with built-in dependency tracking, testing, and environment management" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 2 ], "segment": { "end_index": 1003, "part_index": null, "start_index": 852, "text": "It can also inspect your SQL to figure out your Directed Acyclic Graph (DAG) without needing source and ref macros, and is backward compatible with dbt" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 3, 4 ], "segment": { "end_index": 1281, "part_index": null, "start_index": 1143, "text": "It\u0027s integrated with BigQuery and allows users to build modular SQL-based transformation pipelines, manage dependencies, and schedule runs" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 1413, "part_index": null, "start_index": 1283, "text": "Dataform supports features like `ref()` for dependency management, similar to dbt, and includes built-in testing and documentation" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 5 ], "segment": { "end_index": 1571, "part_index": null, "start_index": 1415, "text": "* **Datacoves**: Offers a flexible and secure alternative to dbt Cloud, providing built-in Airflow orchestration and a customizable in-browser VS Code IDE" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5 ], "segment": { "end_index": 1712, "part_index": null, "start_index": 1573, "text": "* **Bruin Data**: A modern SQL-based data modeling framework designed to simplify development, testing, and environment-aware deployments" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 5 ], "segment": { "end_index": 1829, "part_index": null, "start_index": 1714, "text": "* **AWS Glue**: A serverless data integration service that supports Python-based ETL and transformation workflows" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 2300, "part_index": null, "start_index": 2100, "text": "* **Coalesce**: A cloud-native transformation, catalog, and governance platform that offers a visual and modular development environment supporting both code-first SQL users and GUI-driven workflows" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 6, 5, 0 ], "segment": { "end_index": 2535, "part_index": null, "start_index": 2465, "text": "It can also incorporate dbt workflows with a native dbt Core component" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 6, 5, 0 ], "segment": { "end_index": 2769, "part_index": null, "start_index": 2694, "text": "It provides a visual transformation studio to design complex data workflows" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 5 ], "segment": { "end_index": 2944, "part_index": null, "start_index": 2771, "text": "* **Informatica**: An enterprise data integration platform with extensive ETL capabilities, a wide array of connectors, data quality tooling, and metadata-driven workflows" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 6, 5, 3 ], "segment": { "end_index": 3201, "part_index": null, "start_index": 3076, "text": "It is built for data analysts and business users who need to clean, shape, and transform datasets without writing SQL or code" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 5 ], "segment": { "end_index": 3364, "part_index": null, "start_index": 3203, "text": "* **Azure Data Factory**: Microsoft-native orchestration for cloud and hybrid data pipelines, offering managed ETL/ELT functionality within the Azure ecosystem" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 2, 7 ], "segment": { "end_index": 3576, "part_index": null, "start_index": 3366, "text": "* **SQL Server Integration Services (SSIS)**: A versatile ETL tool from Microsoft, particularly strong for complex data integration workflows and diverse data sources within a Microsoft SQL Server environment" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 3 ], "segment": { "end_index": 4049, "part_index": null, "start_index": 3908, "text": "While its focus is workflow orchestration, it can schedule and manage data transformation tasks alongside other tasks within larger pipelines" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 4117, "part_index": null, "start_index": 4051, "text": "* **Dagster**: A data orchestration and transformation framework" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1 ], "segment": { "end_index": 4219, "part_index": null, "start_index": 4119, "text": "* **Prefect**: Another orchestration framework that can include Python or SQL transformation steps" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 3 ], "segment": { "end_index": 4369, "part_index": null, "start_index": 4221, "text": "* **Orchestra**: A control plane for data workflows that can orchestrate dbt runs, offering a scalable compute engine, observability, and metadata" } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 5 ], "segment": { "end_index": 4587, "part_index": null, "start_index": 4372, "text": "The best choice among these alternatives often depends on your team\u0027s existing skill set, specific governance and security requirements, preferred cloud platform, and the complexity of your data transformation needs" } } ], "retrieval_metadata": null, "retrieval_queries": null, "search_entry_point": { "rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQERXy5yu9TMtLKNiMyREGCmbULx5bUqfd3Ki3dvjQBDisw5yhd47NDCq1IiR2IO7JxcciJE28Qg6hZZaEJ0OV_-eRQOnkE5jCJkvyimwuU343W_KOzey8QP7YNGqFBuwVI-x6hh3A5xXUbNwcwfa27yJ4PmgnHpL0gRvv9aCJAPwa5gSsVUrYOmtDCOdW8FrMJ7Ju0Vs-5CFX3rYSsGOZt2WrFrIRqCPio=\"\u003ealternatives to dbt for data modeling\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEITeJiUOkTFotWtQ0lFDcTC4fcMIytb1ORL2hvBUsmUtMPN-7iAwW3ejn_3B-EIuGDpgKwhfmcgxUxWt9xa4qR6zg2TD-8znHMLLi50vD6jjirzTT5Hd_hzLH9DaYk-9p5s8rPKvbqCeYfSLCtFH3K-pKEEBcPrDOGSkWStpDCBZ_iUrAb2Q20dusuRZO0TePtNYad_zMm54dirKp2yd1NEpYLE5fafg==\"\u003edbt comparable tools analytics space\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGnPmzfCDw87WGOL0HnA80wSm87WTA96C5W0y3KtEmNN_dBb2v7sizLQZBpLpTEidQMlma_2Xgx_W86IdH8zDWByczTEGYqFqf1nPeNRjvI-SntHnm7hu1WO1ZcMwVoyZQ9xSXfYgWHmJMk1mx05IWQ5fxnMF7S8oAJPzT9_R8lek-CxwKebQJ9Epawjb16b4soPn9aI7KTAnBvwz6bzIJPbfkmiHU445wfW__qA5lM\"\u003etools similar to dbt for data transformation\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n", "sdk_blob": null }, "source_flagging_uris": null, "web_search_queries": [ "dbt comparable tools analytics space", "tools similar to dbt for data transformation", "alternatives to dbt for data modeling" ] }, "index": 0, "logprobs_result": null, "safety_ratings": null, "token_count": null, "url_context_metadata": null } ], "create_time": null, "model_version": "gemini-2.5-flash", "parsed": null, "prompt_feedback": null, "response_id": "-GOMaY7vNMKf28oPmZan4Aw", "sdk_http_response": { "body": null, "headers": { "alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000", "content-encoding": "gzip", "content-type": "application/json; charset=UTF-8", "date": "Wed, 11 Feb 2026 11:11:52 GMT", "server": "scaffolding on HTTPServer2", "server-timing": "gfet4t7; dur=7145", "transfer-encoding": "chunked", "vary": "Origin, X-Origin, Referer", "x-content-type-options": "nosniff", "x-frame-options": "SAMEORIGIN", "x-xss-protection": "0" } }, "usage_metadata": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 932, "candidates_tokens_details": null, "prompt_token_count": 80, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 80 } ], "thoughts_token_count": 172, "tool_use_prompt_token_count": 219, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 219 } ], "total_token_count": 1403, "traffic_type": null } }, "request_payload": { "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: customer = Metabase\n\nUser query: What are some comparable tools to dbt in the analytics space?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }, "retry_policy": { "base_backoff_s": 0.6, "max_retries": 3, "timeout_s": 60 }, "usage": { "cost_usd": 0.002354, "input_tokens": 80, "model": "gemini-2.5-flash", "output_tokens": 932, "pricing_source": "local_price_table_v1", "provider": "gemini", "total_tokens": 1403 }, "usage_raw": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 932, "candidates_tokens_details": null, "prompt_token_count": 80, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 80 } ], "thoughts_token_count": 172, "tool_use_prompt_token_count": 219, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 219 } ], "total_token_count": 1403, "traffic_type": null } }

What was sent to the model?

{ "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\nEntity focus: customer = Metabase\n\nUser query: What are some comparable tools to dbt in the analytics space?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }

Error json

null