Ai visibility local
Local only

Run item

gemini · Metabase1 · question_index=12

Question

How can organizations utilize Redshift for real-time data analysis?

Answer

Organizations can leverage Amazon Redshift for near real-time data analysis, particularly when integrated with Metabase, by employing efficient data ingestion strategies and utilizing Redshift's analytical capabilities. Here's how: 1. **Near Real-time Data Ingestion** * **Streaming Ingestion:** Amazon Redshift supports direct streaming ingestion from services like Amazon Kinesis Data Streams (KDS) and Amazon Managed Streaming for Apache Kafka (MSK). This eliminates the need to stage data in Amazon S3 first, allowing for low-latency data ingestion, often measured in seconds. * **Materialized Views:** Organizations can create materialized views directly on top of these data streams within Redshift. These views can include SQL transformations as part of an ELT (Extract, Load, Transform) pipeline. When the "Auto Refresh" feature is enabled, streaming data is automatically and continuously ingested and updated in these materialized views, providing near real-time data for analysis. * **Zero-ETL Integrations:** Redshift offers zero-ETL integrations to simplify data pipelines, enabling near real-time analytics by connecting data from streaming services, operational databases, and third-party enterprise applications. 2. **Redshift's Analytical Power** * **Massively Parallel Processing (MPP):** Redshift's MPP architecture and columnar storage allow it to perform fast analytical queries on large datasets. * **Scalability:** Redshift Serverless dynamically allocates compute resources based on query demand, enabling organizations to scale analytics workloads without managing infrastructure, maintaining high performance for demanding tasks. 3. **Metabase for Visualization and Exploration** * **Direct Connection:** Metabase connects directly to Amazon Redshift data warehouses, allowing users to analyze and visualize petabytes of data efficiently. * **Interactive Dashboards:** Metabase enables organizations to create interactive dashboards that display the near real-time data from Redshift. These dashboards can be built using Metabase's intuitive query builder (requiring no SQL) or a SQL editor for more complex queries. * **Self-Service Analytics:** Metabase empowers various users across an organization, regardless of their technical expertise, to explore data, drill down into details, and generate reports. * **Alerts and Sharing:** Teams can set up alerts for unexpected data changes and share dashboards and reports via email or Slack, fostering data-driven decision-making throughout the organization. **Use Cases:** Organizations can use Redshift with Metabase for various near real-time applications such as analyzing IoT device data, monitoring application performance, detecting fraud, managing live leaderboards, and providing time-sensitive business reports.

Citations

No citations found.

Raw meta json

{ "attempts": 1, "backoff_ms_total": 0, "grounding_enabled": true, "latency_ms": 10544, "model": "gemini-2.5-flash", "raw_response": { "automatic_function_calling_history": [], "candidates": [ { "avg_logprobs": null, "citation_metadata": null, "content": { "parts": [ { "code_execution_result": null, "executable_code": null, "file_data": null, "function_call": null, "function_response": null, "inline_data": null, "media_resolution": null, "text": "Organizations can leverage Amazon Redshift for near real-time data analysis, particularly when integrated with Metabase, by employing efficient data ingestion strategies and utilizing Redshift\u0027s analytical capabilities.\n\nHere\u0027s how:\n\n1. **Near Real-time Data Ingestion**\n * **Streaming Ingestion:** Amazon Redshift supports direct streaming ingestion from services like Amazon Kinesis Data Streams (KDS) and Amazon Managed Streaming for Apache Kafka (MSK). This eliminates the need to stage data in Amazon S3 first, allowing for low-latency data ingestion, often measured in seconds.\n * **Materialized Views:** Organizations can create materialized views directly on top of these data streams within Redshift. These views can include SQL transformations as part of an ELT (Extract, Load, Transform) pipeline. When the \"Auto Refresh\" feature is enabled, streaming data is automatically and continuously ingested and updated in these materialized views, providing near real-time data for analysis.\n * **Zero-ETL Integrations:** Redshift offers zero-ETL integrations to simplify data pipelines, enabling near real-time analytics by connecting data from streaming services, operational databases, and third-party enterprise applications.\n\n2. **Redshift\u0027s Analytical Power**\n * **Massively Parallel Processing (MPP):** Redshift\u0027s MPP architecture and columnar storage allow it to perform fast analytical queries on large datasets.\n * **Scalability:** Redshift Serverless dynamically allocates compute resources based on query demand, enabling organizations to scale analytics workloads without managing infrastructure, maintaining high performance for demanding tasks.\n\n3. **Metabase for Visualization and Exploration**\n * **Direct Connection:** Metabase connects directly to Amazon Redshift data warehouses, allowing users to analyze and visualize petabytes of data efficiently.\n * **Interactive Dashboards:** Metabase enables organizations to create interactive dashboards that display the near real-time data from Redshift. These dashboards can be built using Metabase\u0027s intuitive query builder (requiring no SQL) or a SQL editor for more complex queries.\n * **Self-Service Analytics:** Metabase empowers various users across an organization, regardless of their technical expertise, to explore data, drill down into details, and generate reports.\n * **Alerts and Sharing:** Teams can set up alerts for unexpected data changes and share dashboards and reports via email or Slack, fostering data-driven decision-making throughout the organization.\n\n**Use Cases:**\nOrganizations can use Redshift with Metabase for various near real-time applications such as analyzing IoT device data, monitoring application performance, detecting fraud, managing live leaderboards, and providing time-sensitive business reports.", "thought": null, "thought_signature": null, "video_metadata": null } ], "role": "model" }, "finish_message": null, "finish_reason": "STOP", "grounding_metadata": { "google_maps_widget_context_token": null, "grounding_chunks": [ { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazonaws.cn", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFymAwAMbvjhTSedSoaP07A7_OL9gaXQbwrHe7aoAigryBA9xc8cciPG3MQ7O1tXmlv2i84c4EfA3t8iGbdZyUJP8PVPNtoE8orpLRYLcmGaccCgSMdpubaYhhHaykSVWl5CcsoGo28-hDISYvljTwc7QvpjicZV9Hdv_G6Ke2Zrrspr7b-irh8TelKYg==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFAgVv4B2ICSXaB4Jgu86cpjgc4WAbT5ckdJ8j13PfVhNaYN0GGwvGpQBBuziad-1ZgQhQ-EwvfRKn9v3yCEiRH4olNPH94h9mapXBpavxIpsL-Ve7DLaA2dvFbv2SN5vx5CttyTN6aRiG8OUeYT5ENGvTFdJpE6aP4rAHvPcVoHgSX1G_Rqdip3GnkkmxBYWrhFRNUfE6kDNbhzljg" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "repost.aws", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEkEiXVTT1AS9JR_3sIh4Phtz0z7VNplXW-1qOKakqozik2pq4w3DpjuK-VUQfBCCETJZZgqevXmMi93KEJEn6OqGozPShuZnIBPrULQS-mLcgW93oKq9rAcSWqATr8IaTZ96w_EudR6u1GKHW6dUQK5C2O1fBG7Lx3Z8kaRaAIBCFpChrOhtdB8vJkkP2VmclxLkNO7qBGSOXx2k1CToKvz0wAvyOBzvMZhjLniQ==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFjhKc4XyL1_59YdmKJ74NiEdYuyhPX4BB-0NiUC2sFyWHCDn21JT_drW9np9nBRAAIMzHuIDi_LGy5tnBvEea7JrZ4EVo6PO5b7EYortqelq4FByw_QOThSnbebWCHmy4RJZDAHlh0FqgMs3QOJQnqFq9FpHPGgaDwP7i9q6dHddqu2mBn2EDV_SMCOl_6MqORBkxgaViEtRD19EUcAcjvbaZHuY66Q0ww86MGTiHtvd_tbqZ8u8RJKJPEIVWLh5yK1E4E-2KsMRh46BItc3nKOwDOmtTCkymO" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFZVHbi-xO8fOEOaOnQVVjWq0r71Z6uIETVbtleHWBuguV3kArdUPAGasMiiagk3GMNQ46XX3LQFyL-D2awTDnD44Q3AdinUXDSY6HFFg-vU0eGehNl8WyZQfPxGjmvauR6ULZHE5ZLNqPyNwPdMlLiyariugdV2a8XrxQ8QE72XWYO7O2QP_HeQrpNQneg6iblXcc=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFC-OCK0d38r9wcI7I1avYC5K-qyYqv-T3bx7eNDJqsFjzNn-RLMgFBDv7ZclLcIqohMS_wKYDmw74zXxoWxNkQoFBoeyo2JIEn06vqzutEWV8q9dlnNpdDgBBouYpOoLsdhdgL4ZXwxBaFJeHcaL2z_KTUVOoF6tSRz4A_dmZD2i6Zv6ukBFwGWFqByd60388WYcDtpxVr6WRz0AHqPyDrg00FIjuFDrybTAeHJLJuKOKvjqs6WUiLjX0I11EJ0Kyjkc8ZjOr_Gi3suPbDYynH" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "amazon.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH9DvNd9R5GUq4AqroTlTQY_oDgCeRT0DZYsWfN7Db_X1OOZ5k_winojSkMbFwSlXMcYfPGg4YZndpKW-ml47b2q22Ep4dKe_WCy8Q78j6WyrC2TvFTJ6xKc8w=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "cloudzero.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEeT5JE3l04M5uFFLthhO87dVds_7_LmYxcRkipFPj6_rNNHEr_lLP8siZ3gfF-TPMUngxha9-qHFmxMU4Pmj_TSQFnv4-SsVdtdNzxHfIhr8864z_lDeZ5XOCesSngCIel4qAnvGE=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "projectpro.io", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH0EUibzwx0nyq0-eEI0HPa9xhRpN_rJRu6cMsVFAb6ygpBpR6mo4HLy0l9M_mA2x9nsTgBmaNgqAMU2Ddbvb0Cs-ElEr9gko3Bmk6hvS8qfbQfmW3RyZ1N9Eus6uA87tQ-UaBFs1uxDmIi93UUh0UYqk9D0F0qTbWqttnVwMs5lYBrLIt504PRFHQ=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "youtube.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHiPMTczz_JXZGlajWjq8ilpXzP_x8H8gt4tya-PTfDfewg1HXY_U93zVsQUOQ36AIay74RiNoeD5WGK23i6FBottrwUNhHuLLEeInIIP9vfraJOgySqX47rQcwMgc8enJ-72GjbQ==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "cdata.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFM-Y6zo_SZGN_84hHnMOpooLINxW2LgzFmNAVg2uiksTnCo2efDzwny3_nk0AY-NMGOlMYNJApvlxaE5cl7hC8Op2mPxMIJ-uMNeT4BQcKX8u3f0SHqDlTEk9yAdAuKeGncx5N9fLKsrL1sk-srcSLYBNq" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFcIZLdvSizPXsn4__m1a__zCxqC_L6RdKZDqos3s7PAHeFnmLpW_i2W0n6Y8v1m3VXwlJl9hfLEzqCVQjZ6verqrQ9spfk92n_wPWjvmAJ4_G-d3eWjRxfx70C4xVCRnSJGE_CX2UX2G6BDb8h7aU=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "metabase.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHCzA0IPTt2vZwJFceTZGJzWff8T9uVrCEyToGKGaq-8lZfjVCvLzVcNfMk4D2hqMNcaSbozMXtlDTk_dMPf80DD6ZwoIlvsqAh-s1BZyQuNu9nNQDL7HSfTlopCWZqr7tJXFu1ZgeBAAMbP1sk9rCPsi75slwpkw==" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "storyblok.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFYq0Lis5HBffopjV3L48wglCFYyoQY1zsuqOyWqQtIDYplF3HSkHX7KkzsZdKHkVCOHKENZmDPld8jx7Qoiz0zVR-uS4loP8ZADrPdIrWs6T67XsSWNktpg1t7VC-OWZDxRg_GvPeAkEK52aT_TTIC8XIILEA=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "medium.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGNAkNozsC24M5jNm2ISq2UC9_SU8arRogi_1haNkWaJeIJvY9GOwXgUB2mxz52EXz76guryL26H4MNtz6gVM2eqwRhuVP-42junl8I9bdchfsMrI6z74e_3prDZkjIAaG9KiYtEpf-x_NiM6aaMVMvkbIjKeYTo3VGV2BwWBNqTCgpZwuMAgA1Puv2R19hwXg3qS1gI3D-5UdKO4DzhZQ=" } }, { "maps": null, "retrieved_context": null, "web": { "domain": null, "title": "learnredshift.com", "uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEmd9ugAFYgNpKTFefeHsvoZ8tN7njwcSPBrDq2XK3FicysjvDk5nwHrrfo7K4f_vxohoesC1JEE7Q95nA7BTEuDt6coBc8kvPIrzWKKiEUZ9iVmqD7RgHlYEE9j5OnSHF-gnO7iEPhM4AIurGYV6QJsaP8ZLbxVHT8otF-6UxIIwIYudYB9AN_CrhMCs86eYzDUyCfu8WurQH8ACGovVIy" } } ], "grounding_supports": [ { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1, 2, 3 ], "segment": { "end_index": 589, "part_index": null, "start_index": 463, "text": "This eliminates the need to stage data in Amazon S3 first, allowing for low-latency data ingestion, often measured in seconds." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 0, 1, 4, 5 ], "segment": { "end_index": 1006, "part_index": null, "start_index": 820, "text": "When the \"Auto Refresh\" feature is enabled, streaming data is automatically and continuously ingested and updated in these materialized views, providing near real-time data for analysis." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6 ], "segment": { "end_index": 1249, "part_index": null, "start_index": 1011, "text": "* **Zero-ETL Integrations:** Redshift offers zero-ETL integrations to simplify data pipelines, enabling near real-time analytics by connecting data from streaming services, operational databases, and third-party enterprise applications." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 7, 8 ], "segment": { "end_index": 1447, "part_index": null, "start_index": 1255, "text": "**Redshift\u0027s Analytical Power**\n * **Massively Parallel Processing (MPP):** Redshift\u0027s MPP architecture and columnar storage allow it to perform fast analytical queries on large datasets." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 6, 7, 9 ], "segment": { "end_index": 1690, "part_index": null, "start_index": 1452, "text": "* **Scalability:** Redshift Serverless dynamically allocates compute resources based on query demand, enabling organizations to scale analytics workloads without managing infrastructure, maintaining high performance for demanding tasks." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 10, 11 ], "segment": { "end_index": 1907, "part_index": null, "start_index": 1696, "text": "**Metabase for Visualization and Exploration**\n * **Direct Connection:** Metabase connects directly to Amazon Redshift data warehouses, allowing users to analyze and visualize petabytes of data efficiently." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11, 12 ], "segment": { "end_index": 2191, "part_index": null, "start_index": 2060, "text": "These dashboards can be built using Metabase\u0027s intuitive query builder (requiring no SQL) or a SQL editor for more complex queries." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11, 13 ], "segment": { "end_index": 2388, "part_index": null, "start_index": 2196, "text": "* **Self-Service Analytics:** Metabase empowers various users across an organization, regardless of their technical expertise, to explore data, drill down into details, and generate reports." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 11 ], "segment": { "end_index": 2592, "part_index": null, "start_index": 2393, "text": "* **Alerts and Sharing:** Teams can set up alerts for unexpected data changes and share dashboards and reports via email or Slack, fostering data-driven decision-making throughout the organization." } }, { "confidence_scores": null, "grounding_chunk_indices": [ 1, 6, 14, 15 ], "segment": { "end_index": 2856, "part_index": null, "start_index": 2594, "text": "**Use Cases:**\nOrganizations can use Redshift with Metabase for various near real-time applications such as analyzing IoT device data, monitoring application performance, detecting fraud, managing live leaderboards, and providing time-sensitive business reports." } } ], "retrieval_metadata": null, "retrieval_queries": null, "search_entry_point": { "rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHFD4eiJS4yBWp7mLSXOfOjtTKyzkvCLRLYcKVr58CxshS8ZZkfpHHF7NsLZgXKeARRj7eubYWLb4OCXV8UtcA-frpY28hVeaTn3GR9LpN9exiWUp7GxnO1mXcv37dbvZpX4tUayCSSsBZ3KbzbR_GsLwBrlLbaPPWz58bQzd3iWTUq6sFr1LCymM07GXWIo01_eo5WTwmXlOu9e_CsvA==\"\u003eRedshift real-time use cases\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEeiJ8_ZxCcREMFdZV-im_l8Xm0jAwdkm_xRRY65f8DKzvJfxfVZ98HlHM3Ea3bG3b6GOg55OE_M4qJt0_y0Kzh6LZtbQb5E71pCdCSiZvDAOkIqmImfRu6md0R8i-9gaXiOn3iAektCGMPkdBCuWm5whII5AjcfsSaGeeVmqj8lyowiTqs5qMhPe1z-bpUEq__WtVnXgqb7cMxJC68-4wVWwsJiZTZrrQ=\"\u003eMetabase Redshift real-time dashboards\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEFZsY0dTokZByvs6onhP5TCXpcO5kjd6X4cZTmI-0V1_g_gY-PnnJHgiLJL7O5rOMxFhcik1Jwew1fIIePqjYvVSd2qKkm-jj6mnoLiw725rVTymDAVNBqh6d05wUgYaCpaFybZu1PwbpyC1ts0w7m7Q9BHuW9TkQ1VByT6tUS2a6pygJ2nkWQb7AiL95cIawGkOov-1gkXh-8wRI-rTRUdWKH96G8BQrmWXRSSI3BYw==\"\u003eRedshift near real-time analytics capabilities\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFKky9Dcgrc3QMD25hOwduTaCUe0GMXXjUfy5yi5ywbyIlTQS4_bp5VYUw9yFWY_s30QbaBWlzY-O9o0wZV2O9o1cgYeC5Z4cTh2m8oRz6xZW0Iqb1NGunAsG3vgHgrXAXuwXm6anEHZJ9XpvKnXHnU037CIRYiQgBOwJfWzPEDafM8VtE62FaleyHPW2lVZbbPj0PrqBlPupZIGQRm0sryye2F\"\u003eRedshift real-time data ingestion\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n", "sdk_blob": null }, "source_flagging_uris": null, "web_search_queries": [ "Redshift near real-time analytics capabilities", "Redshift real-time data ingestion", "Metabase Redshift real-time dashboards", "Redshift real-time use cases" ] }, "index": 0, "logprobs_result": null, "safety_ratings": null, "token_count": null, "url_context_metadata": null } ], "create_time": null, "model_version": "gemini-2.5-flash", "parsed": null, "prompt_feedback": null, "response_id": "RKiMabqmEfXMnsEPpY2P8Ao", "sdk_http_response": { "body": null, "headers": { "alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000", "content-encoding": "gzip", "content-type": "application/json; charset=UTF-8", "date": "Wed, 11 Feb 2026 16:03:16 GMT", "server": "scaffolding on HTTPServer2", "server-timing": "gfet4t7; dur=10297", "transfer-encoding": "chunked", "vary": "Origin, X-Origin, Referer", "x-content-type-options": "nosniff", "x-frame-options": "SAMEORIGIN", "x-xss-protection": "0" } }, "usage_metadata": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 604, "candidates_tokens_details": null, "prompt_token_count": 73, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 73 } ], "thoughts_token_count": 982, "tool_use_prompt_token_count": 425, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 425 } ], "total_token_count": 2084, "traffic_type": null } }, "request_payload": { "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase1\nBrand website: https://metabase.com\n\nUser query: How can organizations utilize Redshift for real-time data analysis?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }, "retry_policy": { "base_backoff_s": 0.6, "max_retries": 3, "timeout_s": 60 }, "usage": { "cost_usd": 0.0015319, "input_tokens": 73, "model": "gemini-2.5-flash", "output_tokens": 604, "pricing_source": "local_price_table_v1", "provider": "gemini", "total_tokens": 2084 }, "usage_raw": { "cache_tokens_details": null, "cached_content_token_count": null, "candidates_token_count": 604, "candidates_tokens_details": null, "prompt_token_count": 73, "prompt_tokens_details": [ { "modality": "TEXT", "token_count": 73 } ], "thoughts_token_count": 982, "tool_use_prompt_token_count": 425, "tool_use_prompt_tokens_details": [ { "modality": "TEXT", "token_count": 425 } ], "total_token_count": 2084, "traffic_type": null } }

What was sent to the model?

{ "input": { "contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase1\nBrand website: https://metabase.com\n\nUser query: How can organizations utilize Redshift for real-time data analysis?", "model": "gemini-2.5-flash" }, "model": "gemini-2.5-flash", "provider": "gemini" }

Error json

null