Run item
gemini · Metabase · question_index=6
Question
What are the best alternatives to Postgres for analytics?
Answer
When seeking alternatives to PostgreSQL for analytics within Metabase, several database options offer enhanced performance, scalability, or specialized features for analytical workloads. Metabase supports a wide range of databases, making it adaptable to various analytical needs.
Here are some of the best alternatives to PostgreSQL for analytics, categorized by type:
**Cloud Data Warehouses (for large-scale analytics):**
These are often fully managed, scalable, and optimized for analytical queries on massive datasets.
* **Amazon Redshift:** A fully-managed, petabyte-scale data warehouse service.
* **Google BigQuery:** A fully-managed, serverless data warehouse that's highly scalable for large datasets.
* **Snowflake:** A cloud-native data warehouse known for its flexibility and ability to handle diverse data workloads.
* **Databricks:** A unified analytics platform built on Apache Spark, suitable for large-scale data processing and analytics.
* **Vertica:** An analytical database designed for high performance on large datasets.
**Specialized Analytical Databases:**
These databases are built from the ground up to excel in analytical processing.
* **ClickHouse:** An open-source, column-oriented database management system optimized for online analytical processing (OLAP) queries.
* **Druid:** A column-oriented, open-source, distributed data store ideal for real-time analytics on large datasets.
**Other Relational Databases (can also handle analytical queries, especially with proper indexing and optimization):**
* **MySQL:** A popular open-source relational database, often simpler to set up than PostgreSQL and performs well for straightforward workloads. Metabase can use MySQL as its production database and connect to it for analytics.
* **Microsoft SQL Server:** A robust relational database offering advanced analytics capabilities and high availability.
* **Oracle Database:** Known for its comprehensive features, scalability, and security, suitable for mission-critical applications and advanced analytics.
* **MariaDB:** An open-source relational database that is a community-developed fork of MySQL, offering similar benefits.
**Query Engines:**
These are not databases themselves but can query data from various sources, including real-time data, and are suitable for massive datasets.
* **SparkSQL:** An open-source query engine that can ingest and query data from a wide variety of sources.
* **Presto (and Starburst):** Open-source distributed SQL query engines designed for fast analytical queries against various data sources, including large data lakes.
When choosing an alternative, consider factors such as data volume, query complexity, real-time analytics requirements, existing infrastructure, and budget. Metabase offers official connectors for all the mentioned databases, ensuring smooth integration for your analytics needs.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 6587,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "When seeking alternatives to PostgreSQL for analytics within Metabase, several database options offer enhanced performance, scalability, or specialized features for analytical workloads. Metabase supports a wide range of databases, making it adaptable to various analytical needs.\n\nHere are some of the best alternatives to PostgreSQL for analytics, categorized by type:\n\n**Cloud Data Warehouses (for large-scale analytics):**\nThese are often fully managed, scalable, and optimized for analytical queries on massive datasets.\n* **Amazon Redshift:** A fully-managed, petabyte-scale data warehouse service.\n* **Google BigQuery:** A fully-managed, serverless data warehouse that\u0027s highly scalable for large datasets.\n* **Snowflake:** A cloud-native data warehouse known for its flexibility and ability to handle diverse data workloads.\n* **Databricks:** A unified analytics platform built on Apache Spark, suitable for large-scale data processing and analytics.\n* **Vertica:** An analytical database designed for high performance on large datasets.\n\n**Specialized Analytical Databases:**\nThese databases are built from the ground up to excel in analytical processing.\n* **ClickHouse:** An open-source, column-oriented database management system optimized for online analytical processing (OLAP) queries.\n* **Druid:** A column-oriented, open-source, distributed data store ideal for real-time analytics on large datasets.\n\n**Other Relational Databases (can also handle analytical queries, especially with proper indexing and optimization):**\n* **MySQL:** A popular open-source relational database, often simpler to set up than PostgreSQL and performs well for straightforward workloads. Metabase can use MySQL as its production database and connect to it for analytics.\n* **Microsoft SQL Server:** A robust relational database offering advanced analytics capabilities and high availability.\n* **Oracle Database:** Known for its comprehensive features, scalability, and security, suitable for mission-critical applications and advanced analytics.\n* **MariaDB:** An open-source relational database that is a community-developed fork of MySQL, offering similar benefits.\n\n**Query Engines:**\nThese are not databases themselves but can query data from various sources, including real-time data, and are suitable for massive datasets.\n* **SparkSQL:** An open-source query engine that can ingest and query data from a wide variety of sources.\n* **Presto (and Starburst):** Open-source distributed SQL query engines designed for fast analytical queries against various data sources, including large data lakes.\n\nWhen choosing an alternative, consider factors such as data volume, query complexity, real-time analytics requirements, existing infrastructure, and budget. Metabase offers official connectors for all the mentioned databases, ensuring smooth integration for your analytics needs.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGMD1H79clZgRNaKApPcdggR_FRFn8YVGT8G2UG6FS51NlFJQfvdZkQQCAK2dsIsM5MwtJENpkYcSE9tzaCUQOyOdW0AsgOIMrrd5imjq4sig6-KbUT7RHHSPMx0eGqR_EP2Phwn0-_-aFFWX-ExWwBKxEj8Q=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG6rJ-E3rYJgn_w0aUF7W_vadCLvBqLCvbCfps-A5TWHZTSFhyF4EZS5FIClURmU5W4qmYTQZFgtaTTdPDbw7pSKYVuo-p23viXxDD84R41PxpndV-xml5vnvLD9tr-FMr4"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGuFe4-ifSm_5bYD4Gd-E4QTvZhy5jpO4jyW4YPWkO4DEGeAMI_J1U4W8lhT9QL5oaiLxS05byeyjbeLf9jG2d8RQhC2LOh_SR8Z1rXk7Ph8On02gZv2lNzWd7vaStY5vfWyycJfqMfFr045UUf11vcLUHCjYqJaJDVynEbQ-nX-Eion7GHPhyr8F5Sr5YjbJJr"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "betterstack.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH6kgQxY9gerEaz_zg2iceiN7d5OXmka0prPuIGgkpGxc3jkWB3DAOngCjwD5b2hRwxYc3BBL8tmYPqH3WmzZQkn-Lxx1TX1e7xPdEU96_iHd_6-uYPTz2MPxGKPuJDlQiJCvRbGR3JEf6Qz-5JxayIRiDJRoDwLGRKST7TuSF5xYVPtA=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "g2.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFNf8d7owBJ08dNG8388TXWyZES8RHJYnhuXCSa31rz5JYc2Wb4OeyPYZeE1objP3HW_QuKZtcZFWbzjEHwB6wmv4B3NZLcANmiVD534Sy-ejdpdEKEoIjRwkBjQ84FDn2Qdq-PDO-Hgh2EFyGP83kd3Z4V5A7pXetUCw=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "dev.to",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGZQmuOogZMgTxIMULu8-n-v0E1f0w_Uh48A30jmTMFmjsQEAyr4r1xAQIyooLAOAvzLF86z3LEcEzE0Ppac1DDvjgZmtDZU8BBo9_3PmbWH6Y2fZOpVifBBPk_2xhFfsOfai_AW2av5lf3TgvG_-sNeo1wemVTot3V-5BPQc0Tn9qHTPfk4nnHMRn5UeLxW_9L_HVALtlCRd6eaFYe0RKJ6Qo="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "ionos.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFoW4CEUI5jxpH7ImeQYQeF164M3vKR7usD70KnmwpZcnVe9BrKbmdgvD2PTHotIcQof1V1ndrZm33JtJwgtR9hTey0qbbqf2C8TLLynyK-CXmRJE-CXherkqbD3jJR7w6geeEpqsmzeJmJSBo1OpK-8aQklrJsUFOUPMMy_zee-PEQRRGdzQ=="
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1
],
"segment": {
"end_index": 280,
"part_index": null,
"start_index": 187,
"text": "Metabase supports a wide range of databases, making it adaptable to various analytical needs."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
1
],
"segment": {
"end_index": 606,
"part_index": null,
"start_index": 526,
"text": "* **Amazon Redshift:** A fully-managed, petabyte-scale data warehouse service."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
1
],
"segment": {
"end_index": 717,
"part_index": null,
"start_index": 607,
"text": "* **Google BigQuery:** A fully-managed, serverless data warehouse that\u0027s highly scalable for large datasets."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
0,
1
],
"segment": {
"end_index": 838,
"part_index": null,
"start_index": 718,
"text": "* **Snowflake:** A cloud-native data warehouse known for its flexibility and ability to handle diverse data workloads."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1
],
"segment": {
"end_index": 966,
"part_index": null,
"start_index": 839,
"text": "* **Databricks:** A unified analytics platform built on Apache Spark, suitable for large-scale data processing and analytics."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
0,
1
],
"segment": {
"end_index": 1055,
"part_index": null,
"start_index": 967,
"text": "* **Vertica:** An analytical database designed for high performance on large datasets."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1
],
"segment": {
"end_index": 1312,
"part_index": null,
"start_index": 1175,
"text": "* **ClickHouse:** An open-source, column-oriented database management system optimized for online analytical processing (OLAP) queries."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
1
],
"segment": {
"end_index": 1431,
"part_index": null,
"start_index": 1313,
"text": "* **Druid:** A column-oriented, open-source, distributed data store ideal for real-time analytics on large datasets."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
3,
4
],
"segment": {
"end_index": 1698,
"part_index": null,
"start_index": 1433,
"text": "**Other Relational Databases (can also handle analytical queries, especially with proper indexing and optimization):**\n* **MySQL:** A popular open-source relational database, often simpler to set up than PostgreSQL and performs well for straightforward workloads."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
5,
0,
1
],
"segment": {
"end_index": 1781,
"part_index": null,
"start_index": 1699,
"text": "Metabase can use MySQL as its production database and connect to it for analytics."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
4
],
"segment": {
"end_index": 1904,
"part_index": null,
"start_index": 1782,
"text": "* **Microsoft SQL Server:** A robust relational database offering advanced analytics capabilities and high availability."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
4
],
"segment": {
"end_index": 2061,
"part_index": null,
"start_index": 1905,
"text": "* **Oracle Database:** Known for its comprehensive features, scalability, and security, suitable for mission-critical applications and advanced analytics."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1,
6
],
"segment": {
"end_index": 2185,
"part_index": null,
"start_index": 2062,
"text": "* **MariaDB:** An open-source relational database that is a community-developed fork of MySQL, offering similar benefits."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
1
],
"segment": {
"end_index": 2455,
"part_index": null,
"start_index": 2347,
"text": "* **SparkSQL:** An open-source query engine that can ingest and query data from a wide variety of sources."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
0,
1
],
"segment": {
"end_index": 2624,
"part_index": null,
"start_index": 2456,
"text": "* **Presto (and Starburst):** Open-source distributed SQL query engines designed for fast analytical queries against various data sources, including large data lakes."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 2905,
"part_index": null,
"start_index": 2783,
"text": "Metabase offers official connectors for all the mentioned databases, ensuring smooth integration for your analytics needs."
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH-S_L8zKA0NGV7XAPVSotsjJsF8xGaQvOSOokAhXl7KeUJYfb6p1klP_S_xzIas8tAcpfOuszyBnIC8QJPD_MX07XlrLbBels4fRSwKb1eU4OsI6Osi26M7r6MOs7HZ5KT603Xzr-XWP_Z7TeCKo_Fc64qD4IA8fK30UxG9OFk_iy62sMLsPf4UZcSDqzWBPinGNrw3gIwqVsM1LF6izIHvZGr9yEeEI_MQGJSBOD0aQ==\"\u003ebest alternatives to PostgreSQL for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH3_LEiG7g33wTPQWL-D-66uuQ9hDFMZ01JBj8qbW0m2oUFkkVqdAwgghwUCdBAd_MhY1OVZs-zI77lhYIdQVWJ57N5CcYiJkbTWLboz0qrPBKIMjKiqFm_lESN3NerOoEldKjttux6CX0kTqgu9l9TDS9RJk6kJsHu6MnBVu943zt3xYISGrYwp2SWHDtGrP7KsvSudOpZ2ijyUpxgPzGM4uV2rfoIeXE2I4a4kA==\"\u003eMetabase supported databases for analytics\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"best alternatives to PostgreSQL for analytics",
"Metabase supported databases for analytics"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "EVyMaaLDDrTl7M8Px5GS0Ag",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 10:38:09 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=6366",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 594,
"candidates_tokens_details": null,
"prompt_token_count": 71,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 71
}
],
"thoughts_token_count": 189,
"tool_use_prompt_token_count": 155,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 155
}
],
"total_token_count": 1009,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0015063,
"input_tokens": 71,
"model": "gemini-2.5-flash",
"output_tokens": 594,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 1009
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 594,
"candidates_tokens_details": null,
"prompt_token_count": 71,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 71
}
],
"thoughts_token_count": 189,
"tool_use_prompt_token_count": 155,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 155
}
],
"total_token_count": 1009,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null