Run item
gemini · Metabase1 · question_index=0
Question
How can I transition my data from Snowflake to BigQuery?
Answer
To transition your data from Snowflake to BigQuery, you typically follow a process that involves extracting data from Snowflake, staging it, and then loading it into BigQuery. There are several methods to achieve this, ranging from using managed Google Cloud services to custom scripting and third-party tools.
Here are the main approaches:
1. **Using Cloud Storage as an Intermediary (ELT/ETL Process)**
This is a common and flexible approach:
* **Export from Snowflake:** Use the `COPY INTO <location>` command in Snowflake to export data from your database tables to an external stage, such as a Google Cloud Storage (GCS) bucket, Amazon S3, or Azure Blob Storage. You can specify the file format (e.g., CSV, JSON, Parquet).
* **Load into BigQuery:** Once the data is in Cloud Storage, you can load it into BigQuery using various methods:
* **BigQuery Data Transfer Service for Cloud Storage connector:** This service can automate scheduled loads from Cloud Storage to BigQuery.
* **`bq` command-line tool:** Use the `bq load` command to import data from GCS files.
* **BigQuery UI:** You can manually load data from a Cloud Storage bucket directly through the BigQuery web interface.
* **BigQuery API client libraries:** Programmatically load data using client libraries (e.g., Python).
* **Dataflow:** For large-scale or complex transformations during loading, Dataflow can read from Cloud Storage and write to BigQuery.
2. **BigQuery Data Transfer Service for Snowflake Connector**
The BigQuery Data Transfer Service offers a connector specifically for Snowflake. This service allows you to schedule and manage automated transfer jobs to migrate data directly from Snowflake to BigQuery. It stages the data in Cloud Storage, Amazon S3, or Azure Blob Storage (depending on where your Snowflake account is hosted) and can automatically detect schema and data-type mapping.
3. **Third-Party ETL Tools and Partner Integrations**
Many Extract, Transform, Load (ETL) tools are designed to facilitate data migration between different data warehouses. These tools can automate the extraction, transformation, and loading process, often providing a user-friendly interface and handling aspects like schema evolution. Examples include Dataflow, Cloud Data Fusion, Dataproc, Talend, Stitch, Fivetran, Estuary Flow, and Windsor.ai. Some of these tools also offer accelerators for Snowflake to BigQuery migration.
4. **Custom Scripting with Python**
You can build a custom data pipeline using Python with libraries such as `snowflake-connector-python`, `google-cloud-bigquery`, and `google-cloud-storage`. This involves connecting to Snowflake, extracting data, temporarily storing it in GCS, and then loading it into BigQuery. This method offers high flexibility and control.
5. **BI Tools for Small Exports**
For smaller datasets, some Business Intelligence (BI) tools connected to Snowflake, such as Metabase, allow you to query data and then download the results as a CSV file, which can then be manually uploaded to BigQuery.
When planning your migration, consider factors such as data volume, frequency of transfers, complexity of transformations, and your team's expertise. Google Cloud provides extensive documentation and tools to support this transition.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 10918,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "To transition your data from Snowflake to BigQuery, you typically follow a process that involves extracting data from Snowflake, staging it, and then loading it into BigQuery. There are several methods to achieve this, ranging from using managed Google Cloud services to custom scripting and third-party tools.\n\nHere are the main approaches:\n\n1. **Using Cloud Storage as an Intermediary (ELT/ETL Process)**\n This is a common and flexible approach:\n * **Export from Snowflake:** Use the `COPY INTO \u003clocation\u003e` command in Snowflake to export data from your database tables to an external stage, such as a Google Cloud Storage (GCS) bucket, Amazon S3, or Azure Blob Storage. You can specify the file format (e.g., CSV, JSON, Parquet).\n * **Load into BigQuery:** Once the data is in Cloud Storage, you can load it into BigQuery using various methods:\n * **BigQuery Data Transfer Service for Cloud Storage connector:** This service can automate scheduled loads from Cloud Storage to BigQuery.\n * **`bq` command-line tool:** Use the `bq load` command to import data from GCS files.\n * **BigQuery UI:** You can manually load data from a Cloud Storage bucket directly through the BigQuery web interface.\n * **BigQuery API client libraries:** Programmatically load data using client libraries (e.g., Python).\n * **Dataflow:** For large-scale or complex transformations during loading, Dataflow can read from Cloud Storage and write to BigQuery.\n\n2. **BigQuery Data Transfer Service for Snowflake Connector**\n The BigQuery Data Transfer Service offers a connector specifically for Snowflake. This service allows you to schedule and manage automated transfer jobs to migrate data directly from Snowflake to BigQuery. It stages the data in Cloud Storage, Amazon S3, or Azure Blob Storage (depending on where your Snowflake account is hosted) and can automatically detect schema and data-type mapping.\n\n3. **Third-Party ETL Tools and Partner Integrations**\n Many Extract, Transform, Load (ETL) tools are designed to facilitate data migration between different data warehouses. These tools can automate the extraction, transformation, and loading process, often providing a user-friendly interface and handling aspects like schema evolution. Examples include Dataflow, Cloud Data Fusion, Dataproc, Talend, Stitch, Fivetran, Estuary Flow, and Windsor.ai. Some of these tools also offer accelerators for Snowflake to BigQuery migration.\n\n4. **Custom Scripting with Python**\n You can build a custom data pipeline using Python with libraries such as `snowflake-connector-python`, `google-cloud-bigquery`, and `google-cloud-storage`. This involves connecting to Snowflake, extracting data, temporarily storing it in GCS, and then loading it into BigQuery. This method offers high flexibility and control.\n\n5. **BI Tools for Small Exports**\n For smaller datasets, some Business Intelligence (BI) tools connected to Snowflake, such as Metabase, allow you to query data and then download the results as a CSV file, which can then be manually uploaded to BigQuery.\n\nWhen planning your migration, consider factors such as data volume, frequency of transfers, complexity of transformations, and your team\u0027s expertise. Google Cloud provides extensive documentation and tools to support this transition.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGrZbYvUnXB1W_nG2tBFI6xpVZlfzp-qJvndQH1xbka1gMugeoYM66oBJJ04c0RNM5ouKv9U6RsuskUi_SZGymcnvWwQNqNF6m1Z0xB-UjHUkJuG9mS8RRVu6RgMdUxC1jnBoXhAufikZKpDJRgDF0XNI6Uz7y2Rpev3tBLH8O8bKP8LQ=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHP_xYW0D3T_Tihv6VyXFR_VPjtIeXuJ5Y8qnWg1q7b7r5qip-0BxIq-XlREuwb87-ylOeKbvNB0FqOB8v1N8VIfDjGiniR3vOd84o8UQsovD9L8BVAWzejjwfaq0I06JFYdpko3DXy44ocCYd_qzA4rYGmqlT1t3gzVl14e_-6qurX"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "monda.ai",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGma9yp0_Ylf7IhlOdSVxdkGDTPCuhOAkT7AdnCwWDafc6igGawk6sxp63DaShqGaLo5WAHRVeDgnUEgd2qsPvvqHhG-S6Sgua_AhjYhbNyL22pcMjlFLjuVOMl3l7LHatGTEux3u6S71h2qkvXnPsYjAsiW6vi7sIHAMRJlFw4tHM1minIDmHjrnWTUewQp1Q="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "snowflake.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGJXdEumHVHOfJGpfiY2mN4A99amLEyV_4WKoCqtaDp4M80SyBo58SemSeWDBl94TIRAV2UJY3CHRQlysPFUB2qJAHCTz1Qc106DRJeBHY-nUZ8U_qEd-iamw60eRXR9zCZxnaUom77xOSeYuqTNvq1MdNSHjI3mg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "fivetran.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFHdR_UIvjR6RARRNwhoxp82w67iJ2F-ud9cvAiCfoVFR3-AKN77K8xTGcdhW3qsXMMQZM4y1Vu50OnkgsQhC-2UoD9y3n7mr7zA7Ol6_T1QuNJa1cSs7LWC2KU2k-ESKLgf3BE18gWztGwRHTkQWl0qM1DhQuVhIBZdRT6i609ZomyMznipZsGCFjBoVzwwQlzOC2O0Q=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQElSAV-xoEuZxvM6VEbzUM8sc3nx-_UpysboW8mwO4rpfBH4dHCprfCHkE89iGj6FEj8zzVoC5l74U4p1K5VR1EkDamCs1ZiXX9_PnaKI1sYQ07RyrB2CqHds4au5ZOBRHZL1vLTfeCsdOOXM0z8yBcNsKCDcrQ7I7_YqgaShC_5Yl5In_OT0NPd33LmZHfai7r0HopNhqc_zo="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "medium.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGg6VA5KAxcq2y-X7u4Bm5Kkw1_SSQOsGPt7MLV_1K-cmiPooS65_pkLDfcoig8gWKPushmfwZkGWMvpq55Tw3kzARj6jwkavM92KJnSK1ae9YXzME3vardkkcOZTktb4EBNMXSIRAZZEDFjY4zgqAdVaszj-dyOfIoxpAcUtCgI88kLSrz5ipfsL0XFPBVBs2dvJpl7r6BJrE8QGpc28b-Vj8="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "revolt.bi",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEKul6wVhCPpouvIZDAMDU71a4sqTcDn2nJk4mpXI3z4S0TWqMiI-5ydowSaOJkhM-5z52L98IDorkkE9Y3ScMeOsuvtiEH4VU4vnEygni5-HcQQklyTtJHNhyyFqeMzcUrqGoCfPG-D_q3cJHI2y1RoP6L0RhhtOIuerIEPIS5Oyec_TYxCnlBToE_uwI="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "kdnuggets.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHNXTB0JneqvMRMqhjOVhe5fNDu447Vctgc8lU_zNJOKjQ64-eP8dQLj7shyTillP4vXQ27-5sxHkAEl3VaNcYbIhwtvmoSYFLryNpi48Y7OcPEvR_H7Dk_ITDatv67ZyGTCchohyxzv6c59_qM4UUaz_zF0g=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "medium.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFxd0G9AN-vv8HMco_1fT616ikMa7Yqx5dVtwUbu5W8VBytFv_mRYP4RFo6SM2hjmax4Okp8HPSTFCKoY0s--1lv5rOi-Q6i5NiDDR7h5XRg73OwK7a69pooL0fs5TU105MOJshGC7GEh52IvOmcPyHRWk8yNkYYG3tcur-S9OvGInDhnTqm95iTderDMqtLsM-5TvRui6b2kKTIk1_WvIko45A"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFQysVAk-e2qL5gxNsltTYtAxhhYn6UMhMJWZ3lcLW2c5wy4YP6dPxBmkvHYeeDIC2lvTRZiNJhTKrdfIRpIc3Iko3oOsULAVuYeeJdg6pIq8DFrbW4WsOBQ1lFmjEnDT1meKpJm4LD5LHmZFPwo0Tpskw="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "dzone.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGBFOkj5KsPuSMOKxp3Y7mzCXURapn6N3Vmq3JUdrcONz7BKEG6C6pX0cyM6qjnyJB-tF25XZvB3h-HQ29Gdsi5SYmAlENMc_iFZC4ceIvTCSywaMEobEa1vAMcu6LxuWHeJM-5JMQysg5aNl5yKJzcG_EmTdTb4YKpIDvFjSZg82Y="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.dev",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEkEzqV0VSHp2NDx8OM8lkoAP3S9xIQDlwvsEU0tqcm7TVfLTnHx6zI-dXP_ZbOGDd8lONdtwzGHo8cGFeLPhRQBr1R9GZAkoxlxZur4QUhcppJveVlxLgmnhO4to6sGlfx3kKzrJv5OCJHMq66iaioyy53idtHB5WEHZZGJg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "searce.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFAzyu_rnkGE9OfndUA3isTu76_JxzAqNk1uvYcBsAEo5CBQa2OR_Xlwygm3gGB-2G8fI7cprZ9oHCuqbm-H4dFedt5DUkEz6x4xCU0xSYyyaOTujG9qIyLnXectfJPp90vfGBr_vPZSJDEgAQaAL_llqHOdrWIaOEKcqvFj9apQIfZ_IrcVt5n0w=="
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1,
2,
3,
4
],
"segment": {
"end_index": 740,
"part_index": null,
"start_index": 681,
"text": "You can specify the file format (e.g., CSV, JSON, Parquet)."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 1010,
"part_index": null,
"start_index": 745,
"text": "* **Load into BigQuery:** Once the data is in Cloud Storage, you can load it into BigQuery using various methods:\n * **BigQuery Data Transfer Service for Cloud Storage connector:** This service can automate scheduled loads from Cloud Storage to BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
5,
6
],
"segment": {
"end_index": 1107,
"part_index": null,
"start_index": 1019,
"text": "* **`bq` command-line tool:** Use the `bq load` command to import data from GCS files."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
7,
8,
6
],
"segment": {
"end_index": 1236,
"part_index": null,
"start_index": 1116,
"text": "* **BigQuery UI:** You can manually load data from a Cloud Storage bucket directly through the BigQuery web interface."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
6,
9
],
"segment": {
"end_index": 1349,
"part_index": null,
"start_index": 1245,
"text": "* **BigQuery API client libraries:** Programmatically load data using client libraries (e.g., Python)."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
6,
10
],
"segment": {
"end_index": 1494,
"part_index": null,
"start_index": 1358,
"text": "* **Dataflow:** For large-scale or complex transformations during loading, Dataflow can read from Cloud Storage and write to BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1
],
"segment": {
"end_index": 1768,
"part_index": null,
"start_index": 1645,
"text": "This service allows you to schedule and manage automated transfer jobs to migrate data directly from Snowflake to BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 1951,
"part_index": null,
"start_index": 1769,
"text": "It stages the data in Cloud Storage, Amazon S3, or Azure Blob Storage (depending on where your Snowflake account is hosted) and can automatically detect schema and data-type mapping."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
2,
11,
12
],
"segment": {
"end_index": 2406,
"part_index": null,
"start_index": 2295,
"text": "Examples include Dataflow, Cloud Data Fusion, Dataproc, Talend, Stitch, Fivetran, Estuary Flow, and Windsor.ai."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
13
],
"segment": {
"end_index": 2487,
"part_index": null,
"start_index": 2407,
"text": "Some of these tools also offer accelerators for Snowflake to BigQuery migration."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
2,
9
],
"segment": {
"end_index": 2807,
"part_index": null,
"start_index": 2686,
"text": "This involves connecting to Snowflake, extracting data, temporarily storing it in GCS, and then loading it into BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4,
8
],
"segment": {
"end_index": 3116,
"part_index": null,
"start_index": 2862,
"text": "**BI Tools for Small Exports**\n For smaller datasets, some Business Intelligence (BI) tools connected to Snowflake, such as Metabase, allow you to query data and then download the results as a CSV file, which can then be manually uploaded to BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1
],
"segment": {
"end_index": 3351,
"part_index": null,
"start_index": 3268,
"text": "Google Cloud provides extensive documentation and tools to support this transition."
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE0dQDQmboffPkzF38D-WyyO1Lb2saG60rgXoC6DDYNEOMZC98b7cdrpzIJ5FE1b8WbSBJhN0dq16PKNuEFRh66GOyvhFqfSIh32hN8s3vhhTo8qdJjXEFZ6hPXgK23RdHjWbnYq5ZIZg1IH9A9h4onNz5BxSr9ERlDnMEllw6PQJD2oTazNzsBO4IwuV0qIeka9F1iceZeZI8Hww==\"\u003eimport data into BigQuery\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF-Qx9scH0xbIn1lLeyanGZtoeHATM0VoBkzBbgvrXl8NF0YyQ7hCeuclFoQ5kH5ooCr5jl3pUTcgWUOyW3cN5IJ5Ppz6jmgImO2EXwXWzp3v8uFgW9CcfDs-D3DPnx0m5bjMbZWdqnW5BriSK54ZYiALWoa9Eb3pVXXTPLxXE9lBRblt02jv6NXkZs0cKI4s0LmLG6jRhDDJx3gV4DjfBne_maW3FpW5CI23JFvA==\"\u003eSnowflake to BigQuery data transfer methods\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHgcLeOSgpMHwU_zdVXliaSXf-bHgJWMWzr7Nd-hXxfF5SZz9sGMppxfPIOgrryhqRbyJT5x6EksgLxjMhFCgYYFBraH1KYB8LO_zlYUIya2u_-nnNL0z97EUfjJP8lrLwBeuegYAR49MUH87BKaIXdlaDf24IkI4UaUM9z5x_bM8t9ndvF33dYffqg-MBKBL-teO0D5bjdJQNlIIta_MeRtD1xWlWqpA4H\"\u003emigrate data from Snowflake to BigQuery\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFTtdNxLc8dlRCTygSNPsfW10qfK0xcnSJQRqnWNNFeXi-XJHwwJuYd_SoSKC0QKzM3PVSNLAfyTSh2rlVavtpN5Hlx8J9eBZuKtulSKk1edgD6HSSmXXtri4tIGT0y-daKkGbkhvSLXxnOMkc_JUbiQEvkKTimvbbtlpRgs85SnX073ehI868SWbRJIdapByeTNu_l0M9KOX3ZVQ4=\"\u003eexport data from Snowflake\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"migrate data from Snowflake to BigQuery",
"Snowflake to BigQuery data transfer methods",
"export data from Snowflake",
"import data into BigQuery"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "OKiMaZ2eH_uzkdUP2ryKyAk",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 16:03:04 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=10562",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 751,
"candidates_tokens_details": null,
"prompt_token_count": 72,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 72
}
],
"thoughts_token_count": 816,
"tool_use_prompt_token_count": 165,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 165
}
],
"total_token_count": 1804,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase1\nBrand website: https://metabase.com\n\nUser query: How can I transition my data from Snowflake to BigQuery?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0018991000000000001,
"input_tokens": 72,
"model": "gemini-2.5-flash",
"output_tokens": 751,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 1804
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 751,
"candidates_tokens_details": null,
"prompt_token_count": 72,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 72
}
],
"thoughts_token_count": 816,
"tool_use_prompt_token_count": 165,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 165
}
],
"total_token_count": 1804,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase1\nBrand website: https://metabase.com\n\nUser query: How can I transition my data from Snowflake to BigQuery?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null