Run item
gemini · Metabase · question_index=0
Question
How can I transition my data from Snowflake to BigQuery?
Answer
To transition your data from Snowflake to BigQuery, you can employ several methods, including using the BigQuery Data Transfer Service, performing a manual Extract, Load, and Transform (ELT) process, or utilizing third-party ETL tools.
Here's a breakdown of the common approaches:
### 1. BigQuery Data Transfer Service (Snowflake Connector)
The BigQuery Data Transfer Service offers a managed solution for automated, scheduled data transfers from Snowflake to BigQuery. This connector streamlines the migration process by:
* Engaging migration agents in Google Kubernetes Engine.
* Triggering a load operation from Snowflake to a staging area in a cloud storage bucket (Amazon S3, Google Cloud Storage, or Azure Blob Storage, depending on where your Snowflake account is hosted).
* Automatically transferring data from the staging area to BigQuery.
* Providing automatic schema detection and data-type mapping, although you can also define it manually.
To set up a transfer, you'll need to prepare your Google Cloud project, define required BigQuery roles, prepare a staging bucket, and create a Snowflake user with necessary permissions. Note that this connector currently does not support incremental data transfers for all cases and transfers are limited to tables within a single Snowflake database and schema per job.
### 2. Manual Extract, Load, and Transform (ELT) Process
This method involves three main steps:
* **Extract Data from Snowflake:**
* Use the `COPY INTO <location>` command in Snowflake to export data from your database tables into files in an external stage, such as Google Cloud Storage, Amazon S3, or Azure Blob Storage.
* You can specify a `SELECT` statement within the `COPY INTO` command to export data based on query results, including data from multiple tables using `JOIN` clauses.
* For smaller datasets or quick exports, you can use SnowSQL or a Business Intelligence (BI) tool like Metabase to download query results as CSV files.
* The `snowflake2bq` tool can also be used to extract data from Snowflake directly to Cloud Storage.
* **Stage Data in Cloud Storage:**
* Google Cloud Storage is a recommended and highly available staging area for incoming data due to its durability and cost-effectiveness.
* BigQuery supports loading various file formats from Cloud Storage, including CSV, JSON (newline-delimited), Avro, Parquet, and ORC.
* **Load Data into BigQuery:**
* **BigQuery Data Transfer Service:** For batch or incremental loading from Cloud Storage and other supported sources, you can schedule load jobs to automate data loading pipelines into BigQuery.
* **`bq load` command-line tool:** Use this command to load data from Cloud Storage or a local file into a BigQuery table.
* **Google Cloud Console, Client Libraries, or REST API:** These interfaces can also be used to create load jobs.
* **Dataflow:** For custom streaming data sources or preprocessing data before loading large throughput into BigQuery, Dataflow is a suitable option.
* **SQL `LOAD DATA` statement:** You can use this SQL statement to load data into BigQuery.
### 3. Partner and Third-Party ETL Tools
Several ETL (Extract, Transform, Load) tools and data integration platforms offer connectors and functionalities specifically designed for migrating data between Snowflake and BigQuery. These tools can simplify the process, handle schema mapping, transformations, and provide features for scheduled syncs or real-time streaming.
Examples of such tools include:
* Fivetran
* Stitch
* Talend
* Apache NiFi
* Estuary Flow
* Airbyte
* Hevo Data
* Matillion
* Dataform (Google Cloud)
* Sling
* Monda Share
* Dataproc (using Spark as an ETL processing engine, suitable for historical, incremental batch replication, and Change Data Capture (CDC)).
When planning your migration, consider factors such as data volume, frequency of updates (batch vs. streaming), data types (and potential mapping differences), and the level of transformation required.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 12699,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "To transition your data from Snowflake to BigQuery, you can employ several methods, including using the BigQuery Data Transfer Service, performing a manual Extract, Load, and Transform (ELT) process, or utilizing third-party ETL tools.\n\nHere\u0027s a breakdown of the common approaches:\n\n### 1. BigQuery Data Transfer Service (Snowflake Connector)\nThe BigQuery Data Transfer Service offers a managed solution for automated, scheduled data transfers from Snowflake to BigQuery. This connector streamlines the migration process by:\n* Engaging migration agents in Google Kubernetes Engine.\n* Triggering a load operation from Snowflake to a staging area in a cloud storage bucket (Amazon S3, Google Cloud Storage, or Azure Blob Storage, depending on where your Snowflake account is hosted).\n* Automatically transferring data from the staging area to BigQuery.\n* Providing automatic schema detection and data-type mapping, although you can also define it manually.\n\nTo set up a transfer, you\u0027ll need to prepare your Google Cloud project, define required BigQuery roles, prepare a staging bucket, and create a Snowflake user with necessary permissions. Note that this connector currently does not support incremental data transfers for all cases and transfers are limited to tables within a single Snowflake database and schema per job.\n\n### 2. Manual Extract, Load, and Transform (ELT) Process\nThis method involves three main steps:\n\n* **Extract Data from Snowflake:**\n * Use the `COPY INTO \u003clocation\u003e` command in Snowflake to export data from your database tables into files in an external stage, such as Google Cloud Storage, Amazon S3, or Azure Blob Storage.\n * You can specify a `SELECT` statement within the `COPY INTO` command to export data based on query results, including data from multiple tables using `JOIN` clauses.\n * For smaller datasets or quick exports, you can use SnowSQL or a Business Intelligence (BI) tool like Metabase to download query results as CSV files.\n * The `snowflake2bq` tool can also be used to extract data from Snowflake directly to Cloud Storage.\n\n* **Stage Data in Cloud Storage:**\n * Google Cloud Storage is a recommended and highly available staging area for incoming data due to its durability and cost-effectiveness.\n * BigQuery supports loading various file formats from Cloud Storage, including CSV, JSON (newline-delimited), Avro, Parquet, and ORC.\n\n* **Load Data into BigQuery:**\n * **BigQuery Data Transfer Service:** For batch or incremental loading from Cloud Storage and other supported sources, you can schedule load jobs to automate data loading pipelines into BigQuery.\n * **`bq load` command-line tool:** Use this command to load data from Cloud Storage or a local file into a BigQuery table.\n * **Google Cloud Console, Client Libraries, or REST API:** These interfaces can also be used to create load jobs.\n * **Dataflow:** For custom streaming data sources or preprocessing data before loading large throughput into BigQuery, Dataflow is a suitable option.\n * **SQL `LOAD DATA` statement:** You can use this SQL statement to load data into BigQuery.\n\n### 3. Partner and Third-Party ETL Tools\nSeveral ETL (Extract, Transform, Load) tools and data integration platforms offer connectors and functionalities specifically designed for migrating data between Snowflake and BigQuery. These tools can simplify the process, handle schema mapping, transformations, and provide features for scheduled syncs or real-time streaming.\n\nExamples of such tools include:\n* Fivetran\n* Stitch\n* Talend\n* Apache NiFi\n* Estuary Flow\n* Airbyte\n* Hevo Data\n* Matillion\n* Dataform (Google Cloud)\n* Sling\n* Monda Share\n* Dataproc (using Spark as an ETL processing engine, suitable for historical, incremental batch replication, and Change Data Capture (CDC)).\n\nWhen planning your migration, consider factors such as data volume, frequency of updates (batch vs. streaming), data types (and potential mapping differences), and the level of transformation required.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFO32nO7Ud31old4Z0k6gD9d0W-qcnaTO_p302Z5kLxUQvX8hMC9Ssk7wpEFvtejmRBw8xoOpOJecqFAcIFXLtoiilbL4b04ZqwafpFLFcAYaFZn_K4dLqdVFhpvDSPHLtvwlHNMmD5vs_vhhJAGbXA8-i6-u-FFqr36uqkOV4LqUQ36Q=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFHUyNtC7-QTfMuHp0Q3cnJb9KHRvT2GxtYPihcMyuoIwI2XlTdqcPsH_PEokonZ0a1l6Qg41-lXpDwzMJiXXEkKsyw7MFXFqscR0TQDtpqcrMgn5-PcCCyQ-QyyyhrgZZ4XC5b6lK_CCWB__rJ5oG3e8HDEDhIL0HRVUCanHGH6TaWTz0="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "celigo.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEzdDTiPeBeTBcWdtViUXUags6-Q_4-cl4nbcDisxG4yJBr7Y_ONeAmW7r8F25_bLWECAeTcn7TF-pBxE91yhfNqR8eF9EQZSgVhoZMns06HPgQpwlWu5Z-AYQqb3E9Jbh630wn8qGTHRQeI7CVaWGQS-_fXF_kNrDyW4u6GH9UbjdqsYeU3Zlr5QvQQQ=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "snowflake.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH41-haI6I87Cou64je1e-3ftCJQNrOG1Y-GGZjJaiea7FFT4TX2CyXmQ6XBnT1_4jUIYCG3zUklI5stSl_VuEuO_2miolZfc-0djkL1lKLk3AVBOt1N9gAnDlwTiPBo5ig7aaZEYLZz9FVKcaBHvX2CqCPSG9PGAY="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "fivetran.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHlkz8sedoAkjRhnxhOYx0-13II9FOya7_AhUJCkyFDeUkjvaUG9mNmJU0AzKNSG6CEsAVsgWmTK_A36I8wtIzQMwgeVbSyeY1Z-OzQDRA19xZM-mtnx12-6_WhdqPT2RYxXexhlx0ZUN8YcnvzQvxNlA27Lp6VbrgU0fLOBwGu-hZq3tixDyX820eQFFsrp154Vya4nGk="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHIJ5uAKQwPGnMxsvqVvGUqWTaV76ZkkC_JMBBqZ9CfVmnsN3GV0QRHrnlnTPP-4oktDFenh2dJn7F6s1DN5d7K4pfluGSjovhD3A4hv32jPuAyOwJ1qllBdFq9Qu4ue2Y9BboT6FQtBcTnz9hpUkZjtbWmwv_QBm8CKXXHzlKK9HgGo1H-0vV33pBhPUFOyZJns1KIpt8jx2OT"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "alphaservesp.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH8ic5-A8CfuULKrNjGgA_AxuX1QzRWG6nPGz93AodUZiyL8Q5fjkQFHdjkGgjqgtYxzBZp02DwYTYGq93xU8RdP68WkfIxBDKaacuadDiaumGGs5xj6iYICnwq3mc-V08S-GOMK9Y2T_jrmAldqR3PF93kQiC8AyV6ouqmJinLBn3olwd2G2kSHbhrNRS5ow=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG4lmSuPcE3z5DoPcxX44IvvlEnPR3pBeO7tXWlzuA_efW_ANFvuyIRssk9ILsIESueQZwL1LujCZkV2BYBihkZ4Z1czLiC5sM76cgCny-y8gUsvqe1IaWrUzXCQr4_XdGaD2gh4H0d0FvQGKQFOlOfBLOxs3Lcu1ePY-WQPgdnL8yonU6lL1O_sn-q4wmjRUBCStnlHwhhYva1uPsNyzcRCbHZCrniG6Z4DA=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGkimPzGj9QL1CVjLMqcxp4hHPtmvm7cJYTo29Y6GWijUcTsAnaJv2qvosUPFG5-hCVbfQb_jDV_c6MrIxduairwPtbJ2OfzTQeGARgWOb3OAKcvW--eiEOH7UfooltgZwrt1fqvRuNakVG6wEQCbIivfLOEnFnfHLy"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "google.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGuschwW8SRsNVP9C5UEhjtd5TuhYLUbXK8t6FLOd3TwjF4XuY6oQNt4YX8dRIJ-lNYWknpMZ3SMn3fqbbshf6eLLmCJ0SrWfKW4Wcfq2txxYSp_r52ZjpTu_EvCae8ZIXImPxVMelYb7aVseK80cIbad4p"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "dzone.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG9zbeEiT-JJHj7BatOqRhJkcqNZqA4dc8miT22-_VauPRulXO5e2p6mkcLluIUhTWrMWmTw1NyaNB0edzz6MpquRWPfJU_JU6n7g8XFczRNwwz_Ed-e2M2YmlSJp4ep4ISBvsx8F8v9NDoElGJp_0ReKk7_AbsK8pi6jhxBtcCv75D"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "monda.ai",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGvKCeIGH_C8KM6CXojVIJrqckK9mRV8bdgsraFc1TBDx9Gi7FM7NKPHRK_dbpNVmApQPXLAo1_xNSWy7yjyPv-2Hw_vW93l6X3iuOjBdmRzjcdCZleox287WAJVx2AR_Iv2DJnDxsxMDxNTOiMvneDYiJTHLt2g7WAGik78SE7KD4-xuJLAu0L5zMXXUlf8YbA"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "slingdata.io",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE22S1fGUH-BENVwnMlOLcabGRu-HJ15LKbhEDYGxV4PmHexNbpqQ2AqYE5CIywPiBUH5WtcebeS-5DWfiJy-TI4zsC_xmXYfAqh0n6T_Sj0JyKjK2WISmBj4WXfwK7WicdjiOaFc3xB2HI8bYBomknF7vbWf9l0wDzmveCKa5jRvZGiuk="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "medium.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGy9R4y-F6loGCofnTO0jvkz1EhAewe_9GQeiAVo7-ZudXsjAZXtVRfqG-6Lg-28YenmkCk0JL4SVxnkNDxrUkadyxBI5jAavr3Ciad_6WJGaK17gdyk62N5SdlK5GXjqPxEo-teEAyKQayNqwxAFGzz8nWbWGOFFiaNU3Pl-D3wFzEJTzPCBWXaWy4T3r6H3A8VS17OHGGfWagkl6HdxQep7_C5w=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "onixnet.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEO1zBKomvrUpFvCCSypjgYF2kRJ_B-wrDOUGPl1DZOKHHz4rtbfMqlgYJn43z4LNeRk9wavQyexHD8bPJbwTP_q1jHcGrnufQZ6AvXcex639Cnh08ngal7oXjh3xFY_4CrPzYLLNAEwkeF7n6oCBL5YimxvPi_0WMZfbDrNh1stktZ16PTd5t8ErVWXxsyvbKB913XlXlaJ9ahHhNjTpE="
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 583,
"part_index": null,
"start_index": 472,
"text": "This connector streamlines the migration process by:\n* Engaging migration agents in Google Kubernetes Engine."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 785,
"part_index": null,
"start_index": 584,
"text": "* Triggering a load operation from Snowflake to a staging area in a cloud storage bucket (Amazon S3, Google Cloud Storage, or Azure Blob Storage, depending on where your Snowflake account is hosted)."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 856,
"part_index": null,
"start_index": 786,
"text": "* Automatically transferring data from the staging area to BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 962,
"part_index": null,
"start_index": 857,
"text": "* Providing automatic schema detection and data-type mapping, although you can also define it manually."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 1149,
"part_index": null,
"start_index": 964,
"text": "To set up a transfer, you\u0027ll need to prepare your Google Cloud project, define required BigQuery roles, prepare a staging bucket, and create a Snowflake user with necessary permissions."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
0
],
"segment": {
"end_index": 1333,
"part_index": null,
"start_index": 1150,
"text": "Note that this connector currently does not support incremental data transfers for all cases and transfers are limited to tables within a single Snowflake database and schema per job."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1,
2,
0,
3
],
"segment": {
"end_index": 1666,
"part_index": null,
"start_index": 1432,
"text": "* **Extract Data from Snowflake:**\n * Use the `COPY INTO \u003clocation\u003e` command in Snowflake to export data from your database tables into files in an external stage, such as Google Cloud Storage, Amazon S3, or Azure Blob Storage."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
3
],
"segment": {
"end_index": 1839,
"part_index": null,
"start_index": 1671,
"text": "* You can specify a `SELECT` statement within the `COPY INTO` command to export data based on query results, including data from multiple tables using `JOIN` clauses."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
4
],
"segment": {
"end_index": 1997,
"part_index": null,
"start_index": 1844,
"text": "* For smaller datasets or quick exports, you can use SnowSQL or a Business Intelligence (BI) tool like Metabase to download query results as CSV files."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1
],
"segment": {
"end_index": 2104,
"part_index": null,
"start_index": 2002,
"text": "* The `snowflake2bq` tool can also be used to extract data from Snowflake directly to Cloud Storage."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
6,
7
],
"segment": {
"end_index": 2286,
"part_index": null,
"start_index": 2106,
"text": "* **Stage Data in Cloud Storage:**\n * Google Cloud Storage is a recommended and highly available staging area for incoming data due to its durability and cost-effectiveness."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5,
6,
7,
8
],
"segment": {
"end_index": 2426,
"part_index": null,
"start_index": 2291,
"text": "* BigQuery supports loading various file formats from Cloud Storage, including CSV, JSON (newline-delimited), Avro, Parquet, and ORC."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
9
],
"segment": {
"end_index": 2662,
"part_index": null,
"start_index": 2428,
"text": "* **Load Data into BigQuery:**\n * **BigQuery Data Transfer Service:** For batch or incremental loading from Cloud Storage and other supported sources, you can schedule load jobs to automate data loading pipelines into BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
5
],
"segment": {
"end_index": 2791,
"part_index": null,
"start_index": 2667,
"text": "* **`bq load` command-line tool:** Use this command to load data from Cloud Storage or a local file into a BigQuery table."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
7
],
"segment": {
"end_index": 2911,
"part_index": null,
"start_index": 2796,
"text": "* **Google Cloud Console, Client Libraries, or REST API:** These interfaces can also be used to create load jobs."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
1,
9
],
"segment": {
"end_index": 3067,
"part_index": null,
"start_index": 2916,
"text": "* **Dataflow:** For custom streaming data sources or preprocessing data before loading large throughput into BigQuery, Dataflow is a suitable option."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
9
],
"segment": {
"end_index": 3165,
"part_index": null,
"start_index": 3072,
"text": "* **SQL `LOAD DATA` statement:** You can use this SQL statement to load data into BigQuery."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10,
11
],
"segment": {
"end_index": 3536,
"part_index": null,
"start_index": 3394,
"text": "These tools can simplify the process, handle schema mapping, transformations, and provide features for scheduled syncs or real-time streaming."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10,
11
],
"segment": {
"end_index": 3582,
"part_index": null,
"start_index": 3538,
"text": "Examples of such tools include:\n* Fivetran"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10
],
"segment": {
"end_index": 3593,
"part_index": null,
"start_index": 3583,
"text": "* Stitch"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10
],
"segment": {
"end_index": 3604,
"part_index": null,
"start_index": 3594,
"text": "* Talend"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10
],
"segment": {
"end_index": 3620,
"part_index": null,
"start_index": 3605,
"text": "* Apache NiFi"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
10
],
"segment": {
"end_index": 3637,
"part_index": null,
"start_index": 3621,
"text": "* Estuary Flow"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11
],
"segment": {
"end_index": 3649,
"part_index": null,
"start_index": 3638,
"text": "* Airbyte"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11
],
"segment": {
"end_index": 3663,
"part_index": null,
"start_index": 3650,
"text": "* Hevo Data"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11
],
"segment": {
"end_index": 3677,
"part_index": null,
"start_index": 3664,
"text": "* Matillion"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11
],
"segment": {
"end_index": 3705,
"part_index": null,
"start_index": 3678,
"text": "* Dataform (Google Cloud)"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
12
],
"segment": {
"end_index": 3715,
"part_index": null,
"start_index": 3706,
"text": "* Sling"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11
],
"segment": {
"end_index": 3731,
"part_index": null,
"start_index": 3716,
"text": "* Monda Share"
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
13
],
"segment": {
"end_index": 3874,
"part_index": null,
"start_index": 3732,
"text": "* Dataproc (using Spark as an ETL processing engine, suitable for historical, incremental batch replication, and Change Data Capture (CDC))."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
14,
0,
7
],
"segment": {
"end_index": 4077,
"part_index": null,
"start_index": 3976,
"text": "streaming), data types (and potential mapping differences), and the level of transformation required."
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGzj1Cpa1BxbGwyJaUwxSgpwXVsnO3LVbeZFhPMhvxxwtona9IlTZ9E2Yr9X5h08CHUzvuNHBcLA7JFsGIVv_9XdImm0i0oNfuVCnhQ0BkitRyFGSswfjBmVo2gqH_6CIlO8peYBPr15QqS0sox5tb5WuB83esffzvwNiodL4lg1H6WVjz_oo7GBNpyXQ5LzwonCu2RhrJMvi5kg6EBKfAY\"\u003eSnowflake data export options\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF0kJe9fnX1wBc-vLOucsBo7fhFdjjL2fchf7s2vdslHr_7AxOrFWl5X_MZlRTIkKWYKHCNECZq2RGe4hk14w-QgIob7YvCmot61ozHMZGqr2B1jccNZ_wOPhy0PIq_YMqX19vekVvpUEkCjlOnXVHdWQanRluZL5_mMN2fFyIXEYcd-pRF-4ZwEnDZUWRc3Isy2guyDAKXMkPj25RKjXaKI9SjIdbNHf937tZkNg==\"\u003eSnowflake to BigQuery data migration tools\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF_IfEkqdWGb6XP6KeXE-F-dAT_zKq7SPj0KiGCnL1IGtZvR3qaQ3BFNAO3dp8frTeLak6wTfB16UlqCn9Vyteu6tclrnvrqq3AAtIyceaUU-TbYESVY0EIVIxwut2ODt4V1Oga6Lm0jPrVMPVbTWB9nrHhDDot-ZpkQYPveU-NiURFLutYq35fBcYUOo84fQFnnMYHowxeWpUGEQXTGKChXJmwv4sOhk4lEA==\"\u003emigrate data from Snowflake to BigQuery\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGMMsAEGBqA1FfNL6MqY9wPIyYWc2ispKPaItApgO9O_i5bp14ejt-sCLjJAUBErRmgn6ztktOYRbLNj5cuagSkU1rbRcTdaDr2lcyQIGqejm8s8BeX6Kepm_8CvDMFvFfZHKZiTWLMAU0pp7IwmIfzK9WTwpcZyJJvKV2Qw6ktXucG6mfDbbFTMQ6QUjxtl99ovBa5aSL1Y-L8bzSOHTIexlq9al21ZtT8V7w=\"\u003eBigQuery Data Transfer Service Snowflake\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFYLBIE2k5OozYgMaEq6WJKls7anEiRBPYgJcX-te6EIXfz4a57og6J4G6aLCJkf43MQY-5krkkBDie_0hpL4unAHuPTY4qwT4OXlYH5HYBhelJPhdUijE1qkg7HD6Opk-v9oO1aWrnPrX_PsfXtnhQZv3wYDRIl_--84evnwp4bHG0UAN-UoG-6sQKUQwhjbf9wK5OKbvJXzERAOBjaBmw\"\u003eBigQuery data loading options\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"migrate data from Snowflake to BigQuery",
"Snowflake to BigQuery data migration tools",
"BigQuery Data Transfer Service Snowflake",
"Snowflake data export options",
"BigQuery data loading options"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "EVyMacaDKq-nkdUPj4fdkQk",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 10:38:09 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=12439",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 930,
"candidates_tokens_details": null,
"prompt_token_count": 73,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 73
}
],
"thoughts_token_count": 1096,
"tool_use_prompt_token_count": 180,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 180
}
],
"total_token_count": 2279,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: How can I transition my data from Snowflake to BigQuery?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0023469000000000003,
"input_tokens": 73,
"model": "gemini-2.5-flash",
"output_tokens": 930,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 2279
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 930,
"candidates_tokens_details": null,
"prompt_token_count": 73,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 73
}
],
"thoughts_token_count": 1096,
"tool_use_prompt_token_count": 180,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 180
}
],
"total_token_count": 2279,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://www.metabase.com\n\nUser query: How can I transition my data from Snowflake to BigQuery?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null