Run item
gemini · Metabase · question_index=8
Question
What are the best alternatives to Postgres for analytics?
Answer
When seeking alternatives to PostgreSQL for analytical workloads, especially for use with Metabase, several databases are designed to outperform PostgreSQL in large-scale data analysis. These alternatives often feature columnar storage, distributed architectures, and optimizations for complex queries, contrasting with PostgreSQL's strength in transactional processing.
Some of the best alternatives to PostgreSQL for analytics, which are also officially supported by Metabase, include:
* **ClickHouse** is an open-source, columnar analytical database management system specifically optimized for fast read performance and complex analytical queries over large datasets. It excels in real-time analytics, event tracking, and time-series data, offering significant speed and efficiency advantages over PostgreSQL for massive data processing. Metabase has an official connector for ClickHouse.
* **Snowflake** is a cloud-native data platform built for Online Analytical Processing (OLAP), capable of managing petabytes of historical data and supporting thousands of concurrent analytical users. Its architecture separates storage and compute, allowing independent scaling and improving query performance drastically for large datasets. Metabase officially supports Snowflake.
* **Amazon Redshift** is a fully managed, petabyte-scale data warehouse service in the cloud. While based on PostgreSQL, it has been optimized with columnar storage and a massively parallel processing (MPP) architecture specifically for data warehousing and business intelligence tasks. Redshift is designed for fast analytics on large datasets and integrates well with AWS services. Metabase offers an official connector for Amazon Redshift.
* **Google BigQuery** is a fully managed, serverless data warehouse designed for high-performance analytics. It leverages Google's infrastructure for processing massive datasets, using a columnar storage format for efficient data compression and fast query execution, even with SQL-like queries. BigQuery is ideal for business analytics, large-scale data processing, and real-time insights. Metabase officially supports Google BigQuery.
These alternatives are generally better suited for analytical workloads due to their architectural design, which prioritizes fast query performance, scalability, and efficiency when dealing with large volumes of data for reporting and business intelligence.
Citations
No citations found.
Raw meta json
{
"attempts": 1,
"backoff_ms_total": 0,
"grounding_enabled": true,
"latency_ms": 8750,
"model": "gemini-2.5-flash",
"raw_response": {
"automatic_function_calling_history": [],
"candidates": [
{
"avg_logprobs": null,
"citation_metadata": null,
"content": {
"parts": [
{
"code_execution_result": null,
"executable_code": null,
"file_data": null,
"function_call": null,
"function_response": null,
"inline_data": null,
"media_resolution": null,
"text": "When seeking alternatives to PostgreSQL for analytical workloads, especially for use with Metabase, several databases are designed to outperform PostgreSQL in large-scale data analysis. These alternatives often feature columnar storage, distributed architectures, and optimizations for complex queries, contrasting with PostgreSQL\u0027s strength in transactional processing.\n\nSome of the best alternatives to PostgreSQL for analytics, which are also officially supported by Metabase, include:\n\n* **ClickHouse** is an open-source, columnar analytical database management system specifically optimized for fast read performance and complex analytical queries over large datasets. It excels in real-time analytics, event tracking, and time-series data, offering significant speed and efficiency advantages over PostgreSQL for massive data processing. Metabase has an official connector for ClickHouse.\n* **Snowflake** is a cloud-native data platform built for Online Analytical Processing (OLAP), capable of managing petabytes of historical data and supporting thousands of concurrent analytical users. Its architecture separates storage and compute, allowing independent scaling and improving query performance drastically for large datasets. Metabase officially supports Snowflake.\n* **Amazon Redshift** is a fully managed, petabyte-scale data warehouse service in the cloud. While based on PostgreSQL, it has been optimized with columnar storage and a massively parallel processing (MPP) architecture specifically for data warehousing and business intelligence tasks. Redshift is designed for fast analytics on large datasets and integrates well with AWS services. Metabase offers an official connector for Amazon Redshift.\n* **Google BigQuery** is a fully managed, serverless data warehouse designed for high-performance analytics. It leverages Google\u0027s infrastructure for processing massive datasets, using a columnar storage format for efficient data compression and fast query execution, even with SQL-like queries. BigQuery is ideal for business analytics, large-scale data processing, and real-time insights. Metabase officially supports Google BigQuery.\n\nThese alternatives are generally better suited for analytical workloads due to their architectural design, which prioritizes fast query performance, scalability, and efficiency when dealing with large volumes of data for reporting and business intelligence.",
"thought": null,
"thought_signature": null,
"video_metadata": null
}
],
"role": "model"
},
"finish_message": null,
"finish_reason": "STOP",
"grounding_metadata": {
"google_maps_widget_context_token": null,
"grounding_chunks": [
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "instaclustr.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGMufMw8IpU9JkV0Wc8wn1SsEE58pF0ijodbgKtN1uz0nymCsMFjYAIS2v3HWlVN5zdA-raIKyRKDpf9RVNzyHafZ-meJgUFEzqJjljXrpUuzWc-GJeb5Z-T6LcaYXVok5RBziGW_lRnBpvC3GSWS2UzbvaJmx1iPKSn-vIuQhCVf1QvTCsK20T-0P0a_CX1DDzGwcI2GGUAP_ZJvW89B5dvk3IF8sTqg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "yandex.cloud",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGlYPXGv87lNoiGpbiQvsMdxA839geN68tnx64EyYqJzXdeCXB6P_zKu3iUUIJb746hvGunEeoOCDKWxJvX9cvkyUODv9LAo9jKqQAzsvE8OwPCI7FMys_YSo2cltXEbI8qmBtqUHMm1OUTrljZbRXmzSratgmdyzUNc5org6s="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "fiveonefour.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG8JJxh1slu3U2e9qy3BDzpVc70RCFwIwY4J-TsaYFAMawERBnMWoyauxpTSty9EPEt-JmGeewwiPmYHd5g_Wlehh1laSRRjEmK3azMwhcbD4AT-ZiQVF9yp5ti6wacBkURoLS4q3AYW65nEMci4Vcx1SInlQ=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "clickhouse.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGRFXHjR562oF0MWBr7B0vCwlgTGBAEgJqrg0jWrNvSmrCujunf0rUnLVgh4vb54pjjZLzCjycFqVel04ZKZYrrhEEI6LvkS53N8Nl50XmceEtRu9_A8nfGtJLR55S33yh_y9Q0LcE89H22RL-KF0UvBjuHplk="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "clickhouse.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGsIJLR097oFagQFph-IbCKXstCNzcHGWnLn7H_WbL5EWJv0dlDq8GLdQnDJg_SgJ47wbEzEsyQgj9clsaJUijJlqyWhdX0I30pQRpcRFGNuxU9-SQmhbPsNs3_NmIArmghQcRXB6pq"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "metabase.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE78zJyNDikTpmEEw_nl3TiDLddESRfz1soJmL7YGqtHXnvmpD129MyJ72azNsKzDKjnItVz9Ky-bXWZMrs2uXcA2iO1ZToe1oBOvQv2Fc0wAztPysZklo3pJe4ORfpTz3vGXGFnK8ILmHtUcQeNVtuRSfNtQ=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "estuary.dev",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHij_GOyh0G6sB5S1y5S_YxYirSs9oon0_soUIkHAjsxzOvvsmF9WdIZxsoCiGYOGZjAdch1kM9ES5rZUHR3HkKoiRqXSTlpK7V_mOVIA16Z2yUPwau1O770sYtZ20MBziTbhqH5bwwzf5EHJg="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "nunariq.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHto1XgYf6ZOLyi6-q0ZOG4XAZB-2X5KLWRaQkjfm1ATKb7a6p_ig-sRLwNWXoM-HEUmh_WNXTJvonrwF7W_BGVwX0K6MnqBEgr5qeZSenhf2c4WlWSfZU2_hywHaNtRfpswZTV63jySGJBbhUnD5y2wCfmf1KwHA=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "influxdata.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFR3LYOrq-YMmyrVdN_4dF_aotGNARRyxD0WfZzZSOv06HGlQxQbysj5004tovhgOal7KOBZ1Tv_Z431O3WLEs-McvHpBecZn2R8nHPmlneyI6E_HQkvfqodsOykm-XO03hFqVGysJuqMrIJ_wke3F8KpTFMhse"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "pgbench.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGRvtrmjnRBagpzeO_fzU2j0Hdcs7s6trRWrMWevWN8Jzoqb3tKjZhuvsP-6jL2tprSQ--jbF54FkRKYF9WX8cDHCXbYmwf3rZGH3nDJOWSu6IxXQyA4XL_ecijeMUcjwNQNlCxN7WtB4mNEAWRngxazA=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "airbyte.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFKG83bI6bEZTdNK9qVwB8Mm2WjVCLNLwrgQn582BHmZ3YQKucYeQOiNfhI3Qc65FtaH4WwE-uLhZuj5UB6OYYfAJTFwTDaZpiK4X69Pz-Sqm4JuygYQ7OmcehamdxZSV17fLJ8YCX2C4Oe7lAo39vQYIEi0x-iliD9bYkIc2UH"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "airbyte.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHNXTH4S3NIMzsQCYgGaWFcE4WzdG8IDbLJPW9jR_sxjFGnvYDI0YpLmt4_e-7Gz6b6x5bMOMpwAI-O5ETxNjUgS14V3axTsuZpFaorp1gcK1TIl_q-HXfHrLA42JOSfSVm_rhxoDfG76XtYKdXfhz5k31nF_JqtL8tttM66Hs="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "reddit.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEQqBS5Pu-hQNOJ6TxuWZgiHOaD3XM-F39G6m9NwOtqkfOZ1F0qBiT9C2FPN2dIAGELeAmPRYFWZbDOx4kc4do-dQuizUGhI6_oeq13V00-E7otYa4xlYHQv8M6hMOlWOLttPWcS7T9r_w7m24g7pgrIsrXLlCvLuheXYdhsMA5Qg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "datasunrise.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH_tDiexFYCNoKABSURlF4bVOX4Vn0dgLLy9MHMcB5iU44OoYta2OEoK9DVH30DRMR_E-R_D8Z7mXoctrtQ9qaR8jCX1x_LtEyhzTBILtmxEOwaM6Q_l9gWAnpAJkZd9rjdPUf1ZEeoPyq-lLfxqQlZRduQb3E7lLBoHk0pU0lKMw=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "stitchdata.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF76u-C_beV53BiS6_n3OCN9D1-blFlk7Er9s1kETZ_oCFR38v7OHz_zG8zdrOEAPW0Mgh9R7tuEs0aMBvLITeZlnYGhRaca7mmwb5No05SZab_brW6x1z-EDrItLuoOa_6A12C_Hl8LJMPRKccBgR4MJpl3O0jawzsOvkpm1BItDqqvBNp"
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "integrate.io",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHvAPF3hsuGdQ3CCvp23A67rrOAKQFtuqOveYP8Rx0x7iO_dkZH52qpuMDlI7JQZajULI5ECj05lfZaAIyA1bk8KdHtgxg6n6qUXCcUoVI3RVh4LyuqZvvsDhMTtqrOnUvgWvrH9mRx9Kg69xE3qA=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "influxdata.com",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGyVNUQks4_moj20fyS-7MxVGWibZdx_P-9aqiY0RM7OyVktRFG4T2u3P3awXbVCaT8C6_UZFGha3I3ErxzJhxqEzyajhNxan3akzwJ-0PakYheAXWuo84gb-y9ctngb4nT5__b_Xn1APNfdyPSAMXm6fepySY="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "learnomate.org",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEHGbgblcAb__X68g9zPSnODmO0to38lKYAHqb-H2d-v9AFeU7hwtnmAcG0fpT02FozfGsj1-a4V5hVGCHuBx6ZoW2_EmnciQ7XkIOC9TiPnBrq4O681x-TTGYlM7sWzlBOwm2iuTTH_TBlHrxcrFaZQQkpt3fN-19ynajAz-3Vfto="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "stackshare.io",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG5-EOVDGBw8j9ChBvzdSn-1Abl4-Y5-MQSANvKkdyS17jWh-J_nQAMyp_tl4n72HhsE3Vjfnivkn665Er3l345p7-m4rah4-LKBO62kEAZp6CUJiddv6k6cQR8KwoO0webxD3lmTPJh-5Ji52BX5F09jXtYbfBxg=="
}
},
{
"maps": null,
"retrieved_context": null,
"web": {
"domain": null,
"title": "weld.app",
"uri": "https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGIpc0IdUVPQuvgar7vx3YU21R9lcMdh-ExmvaVbUqyJufiyf_Mh_PVAx-jYMwk4tMzqNlIqYVShEDjKXOmGkrxtz0LdTJRsjECmu5lZzONs4LmRz_1Ew-XcY5FRJ0W7WEtWAPjRpsx"
}
}
],
"grounding_supports": [
{
"confidence_scores": null,
"grounding_chunk_indices": [
0,
1,
2,
3,
4,
5
],
"segment": {
"end_index": 896,
"part_index": null,
"start_index": 846,
"text": "Metabase has an official connector for ClickHouse."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
6,
7,
8,
9,
10,
5
],
"segment": {
"end_index": 1280,
"part_index": null,
"start_index": 1241,
"text": "Metabase officially supports Snowflake."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
11,
12,
13,
14,
15,
5
],
"segment": {
"end_index": 1725,
"part_index": null,
"start_index": 1667,
"text": "Metabase offers an official connector for Amazon Redshift."
}
},
{
"confidence_scores": null,
"grounding_chunk_indices": [
16,
17,
18,
19,
5
],
"segment": {
"end_index": 2164,
"part_index": null,
"start_index": 2119,
"text": "Metabase officially supports Google BigQuery."
}
}
],
"retrieval_metadata": null,
"retrieval_queries": null,
"search_entry_point": {
"rendered_content": "\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class=\"container\"\u003e\n \u003cdiv class=\"headline\"\u003e\n \u003csvg class=\"logo-light\" width=\"18\" height=\"18\" viewBox=\"9 9 35 35\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z\" fill=\"#4285F4\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z\" fill=\"#34A853\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z\" fill=\"#FBBC05\"/\u003e\n \u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003csvg class=\"logo-dark\" width=\"18\" height=\"18\" viewBox=\"0 0 48 48\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\n \u003ccircle cx=\"24\" cy=\"23\" fill=\"#FFF\" r=\"22\"/\u003e\n \u003cpath d=\"M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z\" fill=\"#4285F4\"/\u003e\n \u003cpath d=\"M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z\" fill=\"#34A853\"/\u003e\n \u003cpath d=\"M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z\" fill=\"#FBBC05\"/\u003e\n \u003cpath d=\"M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z\" fill=\"#EA4335\"/\u003e\n \u003c/svg\u003e\n \u003cdiv class=\"gradient-container\"\u003e\u003cdiv class=\"gradient\"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class=\"carousel\"\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQExTwXVO2rFZ1Pmnm0g6pxz7R97ySRxwuf7F-lJNTE73o0bZyH5BpZX1rzWML2F0YGJU049C7GwPDGjoAVSMLAEBoCwdgJNj8I4r9-CfrArtPt8gvUchYIaMwj87i9GJGb7yZMoAapyk1c9Qe9puv52fFfmndZUu_zJVcHTp1oOxj1ujTgksyVOqg-TshNDZtoEe38W9tzY6gFxhp17LsvQ_teCveJyEDrF\"\u003ePostgreSQL vs ClickHouse for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG1HhVsAq3EjdcfExc-lbbxixCtfO7ekcBc2E3QFcZE0yAUE851-SF7iyrQToGnrbNKNfYoZWYc_lnP_0ij6F-UrvLuEVypuoWH2iJR-mLKql1MAG_MjO9lBDUZayi06u36XqSptGtMx-bFWLELxZl70CVivz-R1q7rizG_AtGZ0Fk_aJQMd5m_RRK_jCvx1AwywPJsrJiCBdlya3sybetNFIiXFCg2xIzOr4M=\"\u003eMetabase compatible analytical databases\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG4E-3YMPeecLUE7ZWtX_uP08lom8UCTfgkvfp-842hxHMDuU2krzxNuUsgRe28gJE851oMTwkIIrGt6HGVppqIiVs7vQIIMMqUU_BJbFfLGOVLamTHLcU6YqmTncopuVutXARNZ1C_yHtK7X8IPeT9DYsrk_uXCTwJ8BaQRbaiCUCAaQDsppqiIV_Odvn0BEKeWstXfuWEV1SjQfgauBk8q6KIRzX-H_wd77PboDjrnw==\"\u003ebest alternatives to PostgreSQL for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFIjdTYYwPuSEQwfADY3asec7c4arT915jhBN6kMoY12LpelDoJ3UxtNl-c5Jdbyjpdh0gUiPz8jkyd8rjKFm1vLISOXWZb0T7mPM4A_lcLd-PKNqQfXtr0NWATkECWtkt-pocDo2tmyQ9Jyp39SgRSR9Yam0BDbsmlGeV7DzupkMWgEAFhW8ndY_iAAD0ps8bcuJhEzx1jpeHGKgUXJ9TmuuQtTdOU-A==\"\u003ePostgreSQL vs Redshift for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFDHzHiX9D9gDNHWJKT_gcB4ZxKNEp1Vw5W9dVwU06WEvbxj7CHjL-KBrJ5OTrMfdEdg8J_S43H7qTcNEL7KNEsJsJqA_Ont8SQa48TYIL5ngIzyR3l6hw0qwNomsFETcjMLyayF9iZzK7Fqa9YoJl8B7OmXopSYq3p1PFdR2tesazGDzBv_ORCrUrlWaL2qBAoeBnXgYOZBEs-YyrlaDQ8PFQX9YsZnV0=\"\u003ePostgreSQL vs Snowflake for analytics\u003c/a\u003e\n \u003ca class=\"chip\" href=\"https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFgowaVSeqcAm-5TGHA9uw8cPNZ592bVM4jlugk3bCk91FEHogLTFW-PUDwK5nTF45v67DGBd0DMWantdu9A_vRbZknxKSRTBqG4avyK6BoB7EvRi_J1e3gmYGGSx8-9xX2HlSLY_P0wqGT5vxrAOuCkej9s6wyNQzWSB7CeYu72yvQ-v9NOmMuK3b5kp--Q-NM0c8_1OKhhRrZxPxCT2f9JPENuDOICA==\"\u003ePostgreSQL vs BigQuery for analytics\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n",
"sdk_blob": null
},
"source_flagging_uris": null,
"web_search_queries": [
"best alternatives to PostgreSQL for analytics",
"Metabase compatible analytical databases",
"PostgreSQL vs Redshift for analytics",
"PostgreSQL vs ClickHouse for analytics",
"PostgreSQL vs Snowflake for analytics",
"PostgreSQL vs BigQuery for analytics"
]
},
"index": 0,
"logprobs_result": null,
"safety_ratings": null,
"token_count": null,
"url_context_metadata": null
}
],
"create_time": null,
"model_version": "gemini-2.5-flash",
"parsed": null,
"prompt_feedback": null,
"response_id": "XGKMacm-JaSavdIPnNvq6Qw",
"sdk_http_response": {
"body": null,
"headers": {
"alt-svc": "h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000",
"content-encoding": "gzip",
"content-type": "application/json; charset=UTF-8",
"date": "Wed, 11 Feb 2026 11:05:00 GMT",
"server": "scaffolding on HTTPServer2",
"server-timing": "gfet4t7; dur=8526",
"transfer-encoding": "chunked",
"vary": "Origin, X-Origin, Referer",
"x-content-type-options": "nosniff",
"x-frame-options": "SAMEORIGIN",
"x-xss-protection": "0"
}
},
"usage_metadata": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 480,
"candidates_tokens_details": null,
"prompt_token_count": 69,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 69
}
],
"thoughts_token_count": 626,
"tool_use_prompt_token_count": 203,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 203
}
],
"total_token_count": 1378,
"traffic_type": null
}
},
"request_payload": {
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
},
"retry_policy": {
"base_backoff_s": 0.6,
"max_retries": 3,
"timeout_s": 60
},
"usage": {
"cost_usd": 0.0012207000000000001,
"input_tokens": 69,
"model": "gemini-2.5-flash",
"output_tokens": 480,
"pricing_source": "local_price_table_v1",
"provider": "gemini",
"total_tokens": 1378
},
"usage_raw": {
"cache_tokens_details": null,
"cached_content_token_count": null,
"candidates_token_count": 480,
"candidates_tokens_details": null,
"prompt_token_count": 69,
"prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 69
}
],
"thoughts_token_count": 626,
"tool_use_prompt_token_count": 203,
"tool_use_prompt_tokens_details": [
{
"modality": "TEXT",
"token_count": 203
}
],
"total_token_count": 1378,
"traffic_type": null
}
}
What was sent to the model?
{
"input": {
"contents": "You are answering a user query. Be concise but helpful.\nIf you mention products or brands, be specific.\nDo not invent facts. If unsure, say you are unsure.\n\nBrand under analysis: Metabase\nBrand website: https://metabase.com\n\nUser query: What are the best alternatives to Postgres for analytics?",
"model": "gemini-2.5-flash"
},
"model": "gemini-2.5-flash",
"provider": "gemini"
}
Error json
null